Econ 620 - Spring 2003
Instructor: Prof. K iefer
TA: Fernando Grosz

Solution to the Midterm

Exercise 1:

We are told that $y^{9} y=760 ; 1^{9} y=30 ; x^{9} y=1300 ; 1^{0} x=0 ; 1^{9}=31$ and $x^{9} x=2480$.
Therefore, $n=1^{0} 1=31$ and $\mathrm{x}=\frac{1}{n} 1^{1} x=0$: This was worth 5 points each.
Let $\left.A=I_{n}-1\left(1^{0}\right)\right)^{1} 1^{0}$ (this matrix transforms to deviations from the mean). We can also calculate $y^{0} A y=y^{9} y-n y^{2}=760-31\left(\frac{30}{31}\right)^{2}=730: 97$ as well as $x^{0} A x=x^{0} x-n x^{2}=2480$ and also $y^{0} A x=y^{0} x-n x$ $\nabla=1300$:

In a regression with only one right hand side variable apart from the intercept (the simple regression case), we know that the R^{2} is the square of the correlation between x and y (see lecture 3). Therefore, $R^{2}=\frac{1300^{2}}{730: 97 \text { Q480 }}=0: 932$: (this part, 5 points)
 points)

The t-statistic is $T=\frac{b_{i}-}{\operatorname{se}^{(0)}}$ and under $H_{0} ; T=\frac{b}{\sec ^{(b)}}$: So we need to ..nd the standard error of the slope estimator. We can calculate it as $s e(b)=\frac{q}{\frac{S^{2}}{i\left(x_{i j} X\right)^{2}}}$ where $s^{2}=\frac{e^{0} e}{29}$: In order to ..nd e'e, note that $e^{0}=T S S-E S S=T S S-R^{2} T S S=\left(1-R^{2}\right) T S S=\left(1-R^{2}\right) y^{0} A y=49: 52$ (this part, 5 points). Hence, $s^{2}=1: 707$ (this part, 1 point), se ${ }^{(b)}=0: 026$ (this part, 2 points) and $T=\frac{b}{\sec ^{(b)}}=19: 98$ (this part, 2 points).
p When we regress x on y, for the reason mentioned above, the R^{2} is the same (5 points) and $b^{x}=$ $\frac{{ }_{i} p^{\left(y_{i} i y\right)\left(x_{i} i x\right)}}{i\left(y_{i} i \overline{)^{2}}\right.}=\frac{y^{0} A x}{y^{0} A y}=\frac{1300}{730: 97}=1: 778$ (5 points). Indeed, from problem 5 in homework 2 you can check that $b b^{x}=R^{2}$:
 (5 points), so $s^{2}=\frac{168}{29}=5: 79$ (1 point), se $\left(b^{a x}\right)=\frac{q}{\frac{5: 79}{730: 97}}=0: 089$ (2 points) and $T=\frac{b^{a}}{\operatorname{se}\left(b^{a}\right)}=19: 98$ (why is it the same number?)

In both cases, we would reject the null hypothesis at a signi..cance level of 1%.

Exercise 2:

The dimensions are: V is $n \times n, X$ is $n \times k$, so $V X$ is $n \times k$ and R is $k \times k$, since $R=\left(X V^{i}{ }^{1} X\right)^{i}{ }^{1} X{ }^{9} X$. In the case where $k=1 ; X$ is an eigenvector of V. In general, if the columns of X are each linear combinations of the same k eigenvectors of V, then $b_{O L S}=b_{G L S}$: This is hard to check and would usually be a bad assumption. Note also that there is no hope to estimate V since there are $\frac{n(n+1)}{2}$ parameters to estimate and we only have n observations.

In the SURE system, the dimensions are: V is $m n \times m n, X$ is $m n \times m k$ and R is $m k \times m k$: Using the notation as in lecture $12, V=\S \otimes I_{n}$ and $X=I_{m} \otimes X_{1}$: Note that \S is $m \times m$ and X_{1} is $n \times k$. By

$$
\begin{aligned}
R & =\left(X^{9}{ }^{i}{ }^{1} X\right)^{i{ }^{1}} X^{0} X \\
& =\left[\left(I_{m} \otimes X_{1}^{0}\right)\left(\S^{i 1} \otimes I_{n}\right)\left(I_{m} \otimes X_{1}\right)\right]^{i}\left(I_{m} \otimes X_{1}^{0}\right)\left(I_{m} \otimes X_{1}\right) \\
& =\left[\left(\S^{i}{ }^{1} \otimes X_{1}^{0} X_{1}\right)\right]^{i 1}\left(I_{m} \otimes X_{1}^{0} X_{1}\right) \\
& =\left[\S \otimes\left(X_{1}^{0} X_{1}\right)^{i}\right]^{1}\left(I_{m} \otimes X_{1}^{0} X_{1}\right) \\
& =\S \otimes I_{k}
\end{aligned}
$$

The condition is easily veri..ed: $V X=\left(\S \otimes I_{n}\right)\left(I_{m} \otimes X_{1}\right)=\S \otimes X_{1}$ for the LHS and for the RHS, $X R=\left(I_{m} \otimes X_{1}\right)\left(\S \otimes I_{k}\right)=\S \otimes X_{1}:$

Grading policy: the ..rst part of the question was worth 10 points and checking for the SURE system was worth 15 points.

Exercise 3:

To ..nd c, we need to use the fact that the density has to integrate to one and be nonnegative. Therefore, since the density of each random variable is $f\left(x_{i}\right)=$ cei ${ }^{j x_{i} j}=^{\circ} ; \quad i=1 ; 2 ; \ldots ; N$; each with support the real line, we have that

$$
\begin{aligned}
& Z_{+1} f\left(x_{i}\right) d x_{i}=Z_{+1} c e^{j x_{i} j=\circ} d x_{i} \\
& \text { i } 1 \quad Z_{0}^{i} \quad Z_{+1}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.c^{h^{\circ} e^{x_{i}=0}}\right|_{i 1} ^{0}-\left.{ }^{\circ} e^{0}{ }^{x_{i}=0}\right|_{0} ^{1} \\
& =\mathrm{C}\left[{ }^{\circ}+{ }^{\circ}\right] \\
& =2^{\circ} \mathrm{C}
\end{aligned}
$$

Hence, $c=\frac{1}{2^{\circ}}$:

Since the density of each random variable is $f\left(x_{i}\right)=\frac{1}{2^{\circ}} e^{j} x_{i} j=0 ; i=1 ; 2 ;:: ; N$; each with support the real line, it follows that the joint density of the N independent random variables is the product of them. Therefore, the likelihood function is

$$
L\left({ }^{\circ}\right)=\left(\frac{1}{2^{\circ}} e^{i j x_{1} j=0}\right):::\left(\frac{1}{2^{\circ}} e^{i j x_{n} j=^{\circ}}\right)=\left(\frac{1}{2^{\circ}}\right)^{N} \quad e^{i \frac{1}{o}^{P}}{ }_{i=1}^{N} j x_{i} j
$$

and the log likelihood,

$$
\left(^{\circ}\right)=-N\left\{\ln 2+\ln ^{\circ}\right\}-\frac{1}{o}{ }_{i=1}^{N}\left|x_{i}\right|
$$

Therefore, the score equation is ${ }^{\circ}\left({ }^{\circ}\right)=-\frac{N}{O}+\frac{1}{O 2}^{P}{ }_{i=1}^{N}\left|x_{i}\right|=0$ and the MLE is

$$
B_{M L E}=\frac{P_{i=1}^{N}\left|x_{i}\right|}{N}
$$

By noting that ${ }^{\omega}\left({ }^{\circ}\right)=\frac{N}{O^{2}}-\frac{2}{O_{3}^{3}}{ }^{P} \underset{i=1}{N}\left|x_{i}\right|$; and using (from the score equation) that $\frac{1}{O^{2}}{ }^{P}{ }_{i=1}^{N}\left|x_{i}\right|=\frac{N}{O}$, it follows that the information matrix is $\mathcal{I}\left({ }^{\circ}\right)=E\left(-{ }^{\circ}\left({ }^{\circ}\right)\right)=\frac{N}{\rho_{0}}$ and therefore, $\mathcal{I}^{i}{ }^{1}\left({ }^{\circ}\right)=\frac{{ }^{\circ}{ }^{\circ}}{N}$:

By property of MLE estimators, the asymptotic distribution of the MLE estimator of ${ }^{\circ}$ is normal with mean ${ }^{\circ}$ and asymptotic variance equal to $\stackrel{\circ^{2}}{N} ;$ i.e. $: B_{M L E} \stackrel{a}{\sim} N\left({ }^{\circ} ; \stackrel{\circ}{N}_{N}^{\circ}\right)$

Grading policy: the correct c is worth 5 points, the MLE estimator 10 points, and for the correct asymptotic distribution 10 points.

Statistics:
Lower Quartile: 52
Median: 64
Upper Quartile: 90

