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Solution to the Midterm

Exercise 1:
(this part, 12 points) We have the model

yi = α+ εi

with E(εi) = 0 and Var(εi) = σ2xi and the ε0is are uncorrelated. To find the BLUE for α, we need to
transform the model (use GLS), since the errors are heteroskedastic (OLS will not give us a BLUE estimator
for α because the errors do not have covariance matrix σ2I). Dividing by

√
xi(this can be done because xi

are strictly positive), the transformed model is

yi√
xi
= α

1√
xi
+ εi

1√
xi

and note that the errors in this tranformed model have expectation zero, are uncorrelated and have
variance σ2. Applying OLS to the transformed model, we have that the sum of squares residuals to be
minimized with respect to a is:

S(a) =
nX
i=1

e2i =
nX
i=1

(
yi√
xi
− a 1√

xi
)2 =

nX
i=1

1

xi
(yi − a)2

The first order condition to this minimization problem is,

(−2)
nX
i=1

1

xi
(yi − bα) = 0

Second order conditions for this minimization problem are satisfied since S00(a) = S00(bα) = 2 > 0.
Hence,

bα = Pn
i=1

yi
xiPn

i=1
1
xi

(this part, 8 points)
Substituing yi for α+ εi, we can write

bα = Pn
i=1

α+εi
xiPn

i=1
1
xi

= α+

Pn
i=1

εi
xiPn

i=1
1
xi

Therefore, E(bα) = α and
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V ar(bα) = E(bα− α)2

= E

"Pn
i=1

εi
xiPn

i=1
1
xi

#2

=

"
1Pn
i=1

1
xi

#2
E(

nX
i=1

εi
xi
)2

=

"
1Pn
i=1

1
xi

#2 nX
i=1

E(ε2i )

x2i

=

"
1Pn
i=1

1
xi

#2 nX
i=1

σ2xi
x2i

=
σ2Pn
i=1

1
xi

Grading policy: for the correct estimator 4 out of 12 points, and for the correct variance 4 out of 8 points
were assigned. If you did not get the correct formula, points were assigned to the procedure.

Exercise 2:

Since the density of each random variable is f(ti) = γe−γti , i = 1, 2, ...,N, each with support the
nonnegative reals, it follows that the joint density of the N independent random variables is the product of
them. Therefore, the likelihood function is

L(γ) = (γe−γt1)...(γe−γtN ) = γNe−γ
PN

i=1 ti

and the log likelihood,

` (γ) = N loge γ − γ
NX
i=1

ti

Therefore, the score equation is `0 (γ) = N
γ −

PN
i=1 ti = 0 and the MLE is

bγMLE =
NPN
i=1 ti

=
1

t

where t = 1
N

PN
t=1 ti.

By noting that `00 (γ) = −N
γ2 , it follows that the information matrix is I (γ) = E(−`00 (γ)) = N

γ2 and

therefore, I−1 (γ) = γ2

N .

By property of MLE estimators, the asymptotic variance of the MLE estimator of γ is (I−1 (γ)) equal
to γ2

N .

The mean of this distribution is E(ti) =
R∞
0
tiγe

−γtidti = 1
γ

R∞
0
xe−xdx = 1

γ .

Hence, the MLE for the mean duration is t (by invariance property of MLE estimators; just take g(γ) = 1
γ ).

Again, by invariance property of the MLE estimators (take g(γ) = 1
γ and note that g’(γ) = − 1

γ2 ) the

asymptotic variance of the mean duration is (- 1γ2 )
2 γ

2

N = 1
N γ2 . This follows from the δ− method.
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The variance of unemplyment duration is Var(ti) =
R∞
0
(γ − 1

γ )
2e−γtidti = 1

γ2 , so we can see that the
asymptotic variance of the mean duration is like the usual estimator of the variance of the sample mean.
Points to each part were assigned as follows (in the same order as in the question): 5, 4, 2, 3, 4 and 2

respectively.

Exercise 3:
Each estimator was worth 13 points. Comparing them was worth 1 point.

This exercise uses partition inverse formula. Since we first regress y on X, the residual vector we obtain
from that regression is e =My where M = I −X (X 0X)−1X 0 is an idempotent and symmetric matrix.

Consider now the first model :

y = Xβ + zδ + ε

where X is n x k, β is k x 1, z is n x 1, and δ is 1 x 1. Hence, estimation by OLS gives us :

" bβbδ
#
=

·
X 0X X 0z
z0X z0z

¸−1 ·
X 0y
z0y

¸
Using partitioned inverse formula, we have that

bδ = −[z0z − z0X(X 0X)−1X 0z]−1z0X(X 0X)−1X 0y + [z0z − z0X(X 0X)−1X 0z]−1z0y
= −[z0{I −X(X 0X)−1X 0}z]−1z0X(X 0X)−1X 0y + [z0{I −X(X 0X)−1X 0}z]−1z0y
= −[z0Mz]−1z0X(X 0X)−1X 0y + [z0Mz]−1z0y
= [z0Mz]−1z0[−X(X 0X)−1X 0 + I]y
= (z0Mz)−1z0My

Consider now the second model :

e = zδ +
˜
ε

where z is n x 1, and δ is 1 x 1. Hence, estimation by OLS gives us :

δ∗ = (z0z)−1z0e
= (z0z)−1z0My

Consider now the last model :

e = Xβ + zδ +
`
ε

where X is n x k, β is k x 1, z is n x 1, and δ is 1 x 1. Hence, estimation by OLS gives us :

·
β+

δ+

¸
=

·
X 0X X 0z
z0X z0z

¸−1 ·
X 0e
z0e

¸
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Using partitioned inverse formula, we have that

δ+ = −[z0z − z0X(X 0X)−1X 0z]−1z0X(X 0X)−1X 0e+ [z0z − z0X(X 0X)−1X 0z]−1z0e
= 0 + [z0{I −X(X 0X)−1X 0}z]−1z0e since X 0e = 0
= [z0Mz]−1z0e
= (z0Mz)−1z0My since e =My

Therefore, the conjecture is incorrect. It is true that bδ = δ+, but it is incorrect that bδ or δ+ will be equal
to δ∗ (the three estimators will be equal if z0z = (z0Mz) and this will happen if X and z are orthogonal).

Exercise 4:

(this part, 6 points)
We are told that one of the eigenvectors associated to Vn is 1n. So, in order to calculate the corresponding

eigenvalue, we write:

V 1n = λ1n

Hence,

[In + α1n1
0
n]1n = λ1n

[In + α1n1
0
n]1n − λIn1n = 0

[(1− λ)In + α1n1
0
n]1n = 0

(1− λ)1n + α1n1
0
n1n = 0

(1− λ)1n + αn1n = 0 since 10n1n = n
[(1− λ) + αn]1n = 0

This will give us the eigenvalue associated to the eigenvector 1n associated to matrix V. So, we set
(1− λ) + αn = 0 and hence λ = 1 + αn.

(This part is worth 10 points. Here it was expected that you show the procedure to get all the eigenvalues
associated to V; the procedure alone is worth 6 points.)

We are told that one of the eigenvectors is 1n, so a direct approach is to look at eigenvectors orthogonal
to 1n, that is, eigenvectors y1, ..., yn−1, such that 10nyi = 0 (for i = 1, ..., n − 1). Then, the characteristic
equations are (i = 1, ..., n− 1)

[In + α1n1
0
n]yi = λiyi

Inyi + α1n1
0
nyi = λiInyi

Inyi = λiInyi since 10nyi = 0
yi = λiyi

⇒ λi = 1

Hence, the rest of the eigenvalues are all equal to one (so the ”n” eigenvalues are λ = 1 with multiplicity
n-1 and λ = 1 + αn).

If you do not trust the above procedure, you can calculate the eigenvalues by the usual approach, but
there is much more work to do. Here it is:

To calculate all the eigenvalues associated to V, we use 3 facts:
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Fact 1: if you create a matrix B from a matrix A by susbtracting a multiple of one row of A to another
row of A, the determinant is the same; that is, det A = det B.
Fact 2: if you create a matrix B from a matrix A by multiplying one row of matrix A by a constant r,

then det B = r det A.
Fact 3: the determinant of a lower or upper triangular matrix is equal to the product of its diagonal

elements.

For the proofs, you can see, for instance, Simon and Blume, Mathematics for Economist, 1994, page 729.

So, going back to the question, the charateristic equation is,

V x = λx

[In + α1n1
0
n]x = λx

[In + α1n1
0
n]x = λInx

[(1− λ)In + α1n1
0
n]x = 0

Non trivial solution to this system requires that det[(1 − λ)In + α1n1
0
n] = 0. Now, let’s see how [(1 −

λ)In + α1n1
0
n] looks like:

[(1− λ)In + α1n1
0
n] =



1− λ+ α α α . . . α α α
α 1− λ+ α α α α . . . α
α α 1− λ+ α α . . α . α
α α α . α . . . α
α α α α . α α α α
α . . . α . α α α
α . α . . α 1− λ+ α α α
α . . . . . α 1− λ+ α α
α α α α . . . α 1− λ+ α



In order to calculate all the eigenvalues of this matrix, we will make it upper-triangular. To accomplish
this, we do it in three steps. First, we are going to substract the last row from every row (we are using n-1
times fact 1), to get that:

0 = det[(1− λ)In + α1n1
0
n]

= det



1− λ+ α α α . . . α α α
α 1− λ+ α α α α . . . α
α α 1− λ+ α α . . α . α
α α α . α . . . α
α α α α . α α α α
α . . . α . α α α
α . α . . α 1− λ+ α α α
α . . . . . α 1− λ+ α α
α α α α . . . α 1− λ+ α



= det



1− λ 0 0 . . . 0 0 λ− 1
0 1− λ 0 0 0 . . . λ− 1
0 0 1− λ 0 . . 0 . λ− 1
0 0 0 1− λ 0 . . . λ− 1
0 0 0 0 1− λ 0 0 0 λ− 1
0 . . . 0 1− λ 0 0 λ− 1
0 . 0 . . 0 1− λ 0 λ− 1
0 . . . . . 0 1− λ λ− 1
α α α α . . . α 1− λ+ α


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Second, we are going to factor out 1−λ corresponding to each but the last row (the first up to the (n-1)th
row). Here we are using n-1 times fact 2. Hence,

0 = det[(1− λ)In + α1n1
0
n]

= (1− λ)n−1 det



1 0 0 . . . 0 0 −1
0 1 0 0 0 . . . −1
0 0 1 0 . . 0 . −1
0 0 0 1 0 . . . −1
0 0 0 0 1 0 0 0 −1
0 . . . 0 1 0 0 −1
0 . 0 . . 0 1 0 −1
0 . . . . . 0 1 −1
α α α α . . . α 1− λ+ α


Third, we are going to substract α times the first row from the last row; then we are going to substract

α times the second row from the last row, and so on, up to substracting α times the (n-1)th row from the
last row. Here again, we use n-1 times fact 1. So,

0 = det[(1− λ)In + α1n1
0
n]

= (1− λ)n−1 det



1 0 0 . . . 0 0 −1
0 1 0 0 0 . . . −1
0 0 1 0 . . 0 . −1
0 0 0 1 0 . . . −1
0 0 0 0 1 0 0 0 −1
0 . . . 0 1 0 0 −1
0 . 0 . . 0 1 0 −1
0 . . . . . 0 1 −1
α α α α . . . α 1− λ+ α



= (1− λ)n−1 det



1 0 0 . . . 0 0 −1
0 1 0 0 0 . . . −1
0 0 1 0 . . 0 . −1
0 0 0 1 0 . . . −1
0 0 0 0 1 0 0 0 −1
0 . . . 0 1 0 0 −1
0 . 0 . . 0 1 0 −1
0 . . . . . 0 1 −1
0 0 0 0 . . . 0 1− λ+ α+ (n− 1)α


We are now able to calculate all the eigenvalues. By fact 3, it follows that

det[(1− λ)In + α1n1
0
n] = 0

(1− λ)n−1[1− λ+ α+ (n− 1)α] = 0

(1− λ)n−1[1− λ+ nα] = 0

Therefore, the eigenvalues associated to the matrix V are λ = 1 (with multiplicity n-1) and λ = 1 + αn.

(last part, 4 points)
Finally, since V is a variance covariance matrix, it must be positive definite. The determinant of V is

the product of its eigenvalues and hence (you can also calculated it using the above procedure) is 1 + αn
and must be positive so that V is positive definite. In principle, for fixed n, α can be negative, but if we let
n→ ∞, α < 0 must be ruled out. However, any α ≥ 0 is fine, so in large economies there can be arbitrary
positive correlation, but not much negative correlation (for fixed n). To see this, note that the correlation
between εi and εj (where i 6= j) is α

1+α and
α
1+α ∈ [0, 1) if α ≥ 0.
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