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Three Likelihood Based Tests

Suppose that we have the log-likelihood function for n observations as;

L (θ)

where θ ∈ Θ ⊂ Rk

The (unconstrained) MLE for θ is defined as

θ̂ = arg max
θ∈Θ

L (θ)

Moreover, we have the following hypotheses;

H0; g (θ) = 0 HA; g (θ) �= 0

where g (·) : Rk → Rq and continuously differentiable with ∂g
∂θ of full column rank. We define the constrained

MLE for θ as
θ = argmax

θ∈Θ
L (θ) + g′ (θ) λ

where λ is a (q × 1) vector of Lagrangian multipliers.
We have three versions of tests to check the hypothesis;

W = ng
(
θ̂
)′ ⎡⎣∂g

(
θ̂
)

∂θ′
i−1
(
θ̂
) ∂g′

(
θ̂
)

∂θ

⎤⎦−1

g
(
θ̂
)
∼ χ2 (q)

LM =
1
n

s
(
θ
)′

i−1
(
θ
)
s
(
θ
)

=
1
n

λ
′
(

∂g
(
θ
)

∂θ′
i−1

(
θ
) ∂g′

(
θ
)

∂θ

)
λ ∼ χ2 (q)

LR = 2
[
L
(
θ̂
)
− L

(
θ
)] ∼ χ2 (q)

where s
(
θ
)

= ∂L(θ)
∂θ |θ=θ − score evaluated at θ = θ, λ is the Lagrangian multiplier and i (θ) is the information

matrix.

Three Tests in Normal Linear Model - Known Variance -

Suppose we have the following model;

y = Xβ + ε ε ∼ N
(
0, σ2I

)
where σ2 is known. Without loss of generality, we can assume that σ2 = 1. Furthermore, suppose that we
have the following linear restrictions;

H0; Rβ − r = 0 HA; Rβ − r �= 0

Then, the log likelihood function is given by

L (β) = −n

2
log 2π − 1

2
(y − Xβ)′ (y − Xβ)

The first-order condition for maximization is;

∂L (β)
∂β

= X ′y − X ′Xβ̂ = 0
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Hence, the unconstrained MLE is given by

β̂ = (X ′X)−1
X ′y (1)

On the other hand, we can obtain the constrained MLE;

L = −n

2
log 2π − 1

2
(y − Xβ)′ (y − Xβ) + (Rβ − r)′ λ

The first-order conditions are;

∂L
∂β

= X ′y − X ′Xβ + R′λ = 0 (2)

∂L
∂λ

= Rβ − r = 0 (3)

From (2),
β = (X ′X)−1

X ′y + (X ′X)−1
R′λ = β̂ + (X ′X)−1

R′λ (4)

Multiplying (4) with R and rewriting gives;

λ =
[
R (X ′X)−1

R′
]−1 (

Rβ − Rβ̂
)

=
[
R (X ′X)−1

R′
]−1 (

r − Rβ̂
)

from (3)

= −
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(5)

Substituting (5) back into (4) yields;

β = β̂ − (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(6)

To get the information matrix, we differentiate the score with respect to β;

∂2L (β)
∂β∂β′ = − (X ′X)

Therefore, the information matrix is given by;

1
n

E

(
−∂2L (β)

∂β∂β′

)
= i (β) =

[
1
n (X ′X)

]
(7)

Note that

g (β) = Rβ − r ⇒ g
(
β̂
)

= Rβ̂ − r,
∂g
(
β̂
)

∂β
= R

Then,

W = n
(
Rβ̂ − r

)′ [
R
[
n (X ′X)−1

]
R′
]−1 (

Rβ̂ − r
)

=
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(8)

Again, note that
∂g
(
β
)

∂β
= R, i

(
β
)

=
1
n

(X ′X)

remember that ∂g(β)
∂β and i (β) do not depend on β in our case.
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The LM statistic is given by;

LM =
1
n

λ
′
(

∂g
(
θ
)

∂θ′
i−1
(
θ
) ∂g′

(
θ
)

∂θ

)
λ

=
1
n

(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

[
R

(
1
n

X ′X
)−1

R′
] [

R (X ′X)−1
R′
]−1 (

Rβ̂ − r
)

=
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(9)

the second equality comes from (5). From (7) and (8), we can check W = LM.
We have to evaluate the log-likelihood function at the constrained and the unconstrained MLE to find

the LR statistic. Now,

L
(
β̂
)

= −n

2
log 2π − 1

2

(
y − Xβ̂

)′ (
y − Xβ̂

)
= −n

2
log 2π − 1

2
ê′ê

L
(
β
)

= −n

2
log 2π − 1

2
(
y − Xβ

)′ (
y − Xβ

)
= −n

2
log 2π − 1

2
e′e

Then,
LR = 2

[
L
(
β̂
)
− L

(
β
)]

= [e′e − ê′ê] (10)

However,

e′e =
(
y − Xβ

)′ (
y − Xβ

)
=
[
y − X

(
β̂ − (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
))]′

[
y − X

(
β̂ − (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
))]

from(6)

=
[(

y − Xβ̂
)

+ X (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]′

[(
y − Xβ̂

)
+ X (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

=
(
y − Xβ̂

)′ (
y − Xβ̂

)
+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

R (X ′X)−1
X ′
(
y − Xβ̂

)
+
(
y − Xβ̂

)′
X (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

R (X ′X)−1
X ′X (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

=
(
y − Xβ̂

)′ (
y − Xβ̂

)
+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

= ê′ê +
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(11)

note that the second and the third term in the expansion vanish since X ′
(
y − Xβ̂

)
= X ′ê = 0. From (10)

and (11), we have

LR = e′e − ê′ê =
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

Hence, we conclude that LR = W = LM. Moreover, we know that

LR = W = LM ∼ χ2 (q)

Since the model is based on the normally distributed error terms, we can actually obtain the exact
distribution of the test statistic. Note that

β̂ ∼ N
(
β, (X ′X)−1

)
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remember that MLE is the least squares estimator in our case and we assumed that σ2 = 1. Then,

Rβ̂ ∼ N
(
Rβ, R (X ′X)−1

R′
)

(
Rβ̂ − Rβ

)
∼ N

(
0, R (X ′X)−1

R′
)

Under the null hypothesis, Rβ = r.(
Rβ̂ − r

)
∼ N

(
0, R (X ′X)−1

R′
)

Then, we can form a quadratic form of the normal variates to get a χ2 random variable such that(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)
∼ χ2 (q)

since rank
[
R (X ′X)−1

R′
]

= q by assumption. We don’t need the F−test here since we know σ2 = 1. The
three likelihood based tests have the exact distribution as shown above. Since the distribution of error term
is normal, we don’t need the three tests based on asymptotic argument. However, we have shown that the
asymptotic tests works even in the exact case.

Three Tests in Normal Linear Model - Unknown Variance -

Suppose we have the following model;

y = Xβ + ε ε ∼ N
(
0, σ2I

)
and the following linear restrictions;

H0; Rβ − r = 0 HA; Rβ − r �= 0

Then, the log likelihood function is given by

L
(
β, σ2

)
= L (θ) = −n

2
log 2π − n

2
log σ2 − 1

2σ2
(y − Xβ)′ (y − Xβ)

where θ =
(
β′, σ2

)′
.

The first-order derivatives(scores) are;

∂L (θ)
∂β

= − 1
σ2

[−X ′y + X ′Xβ] (12)

∂L (θ)
∂σ2

= − n

2σ2
+

1
2σ4

(y − Xβ)′ (y − Xβ) (13)

The second order derivatives are

∂2L (θ)
∂β∂β′ = − 1

σ2
X ′X

∂2L (θ)
∂β∂σ2

=
1
σ4

[−X ′y + X ′Xβ]

∂2L (θ)
∂ (σ2)2

=
n

2σ4
− 1

σ6
(y − Xβ)′ (y − Xβ)
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Taking the expectations of the minus of the second derivatives;

E

(
−∂2L (θ)

∂β∂β′

)
=

1
σ2

X ′X

E

(
−∂2L (θ)

∂β∂σ2

)
=

1
σ4

[−X ′E (y) + X ′Xβ]

=
1
σ4

[−X ′Xβ + X ′Xβ] = 0

E

(
−∂2L (θ)

∂ (σ2)2

)
= − n

2σ4
+

1
σ6

E
[
(y − Xβ)′ (y − Xβ)

]
= − n

2σ4
+

1
σ6

E (ε′ε) = − n

2σ4
+

1
σ6

nσ2

=
n

2σ4

Therefore, the information matrix is given by

1
n

E

(
−∂2L (θ)

∂θ∂θ′

)
= i
(
β, σ2

)
=
[

1
nσ2 X ′X 0

0 1
2σ4

]
The unrestricted MLE is given by;

β̂ = (X ′X)−1
X ′y

σ̂2 =
1
n

(
y − Xβ̂

)′ (
y − Xβ̂

)
=

1
n

ê′ê

from (12) and (13).
We are now ready to form the Wald statistic.. Note that our null hypothesis is not involved in σ2.

In addition, since the information matrix is block diagonal between β and σ2, we can ignore σ2 in doing
inferences on β. Identifying each elements in the statistic, we find that

W = ng
(
β̂
)′ ⎡⎣∂g

(
β̂
)

∂θ′
i−1
(
β̂
) ∂g′

(
β̂
)

∂θ

⎤⎦−1

g
(
β̂
)

= n
(
Rβ̂ − r

)′ [
R

(
1

nσ̂2
X ′X

)−1

R′
]−1 (

Rβ̂ − r
)

= σ̂−2
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(14)

note that the test statistic contains σ̂2 unlike before. To find the LM statistic, we again form a constrained
maximization problem;

L = −n

2
log 2π − n

2
log σ2 − 1

2σ2
(y − Xβ)′ (y − Xβ) + (Rβ − r)′ λ

The first-order conditions are;

∂L
∂β

=
1
σ2

[
X ′y − X ′Xβ

]
+ R′λ = 0 (15)

∂L
∂σ2

= − n

2σ2 +
1

2σ4

(
y − Xβ

)′ (
y − Xβ

)
= 0 (16)

∂L
∂λ

= Rβ − r = 0 (17)

From (15),
β = (X ′X)−1

X ′y + σ2 (X ′X)−1
R′λ = β̂ + σ2 (X ′X)−1

R′λ (18)
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Multiplying (18) with R and rewriting gives;

λ = σ−2
[
R (X ′X)−1

R′
]−1 (

Rβ − Rβ̂
)

= σ−2
[
R (X ′X)−1

R′
]−1 (

r − Rβ̂
)

from (17)

= −σ−2
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(19)

Substituting (19) back into (18) yields;

β = β̂ − (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(20)

The LM statistic is now given by;

LM =
1
n

λ
′
(

∂g
(
θ
)

∂θ′
i−1
(
θ
) ∂g′

(
θ
)

∂θ

)
λ

=
1
n

[
σ−2

[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]′ [

R

(
1

nσ2 X ′X
)−1

R′
]

[
σ−2

[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

= σ−2
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 [

R (X ′X)−1
R′
] [

R (X ′X)−1
R′
]−1 (

Rβ̂ − r
)

= σ−2
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(21)

Note that (14) and (21) are different. We use σ̂2 = ê′ê
n in (14) and σ2 = ē′ē

n = (y−Xβ)′(y−Xβ)
n in (21).

The values of likelihood function at the unconstrained and the constrained MLE are given by;

L
(
β̂, σ̂2

)
= −n

2
log 2π − n

2
log σ̂2 − 1

2σ̂2

(
y − Xβ̂

)′ (
y − Xβ̂

)
= −n

2
log 2π − n

2
log σ̂2 − 1

2σ̂2
ê′ê = −n

2
log 2π − n

2
log σ̂2 − 1

2σ̂2
nσ̂2

= −n

2
log 2π − n

2
log σ̂2 − n

2

L
(
β̄, σ̄2

)
= −n

2
log 2π − n

2
log σ̄2 − 1

2σ2

(
y − Xβ

)′ (
y − Xβ

)
= −n

2
log 2π − n

2
log σ̄2 − 1

2σ2 ē′ē = −n

2
log 2π − n

2
log σ̄2 − 1

2σ2 nσ̄2

= −n

2
log 2π − n

2
log σ̄2 − n

2

Then,

LR = 2
[
L
(
β̂, σ̂2

)
− L

(
β̄, σ̄2

)]
= n

[
log σ̄2 − log σ̂2

]
= n log

σ̄2

σ̂2
(22)
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A very expression can be obtained as;

n
(
σ̄2 − σ̂2

)
= ē′ē − ê′ê =

(
y − Xβ

)′ (
y − Xβ

)− (y − Xβ̂
)′ (

y − Xβ̂
)

= −2y′Xβ + β
′
X ′Xβ − 2y′Xβ̂ + β̂′X ′Xβ̂

= −2y′X
[
β̂ − (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

+
[
β̂ − (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]′

X ′X[
β̂ − (X ′X)−1

R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

− 2y′Xβ̂ + β̂′X ′Xβ̂ from (20)

= −2y′Xβ̂ + 2y′X (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+ β̂′X ′Xβ̂ −
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

R (X ′X)−1
X ′Xβ̂

− β̂′X ′X (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

R (X ′X)−1
X ′X (X ′X)−1

× R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

− 2y′Xβ̂ + β̂′X ′Xβ̂

= 2y′X (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)
−
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1

Rβ̂

− β̂′R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

= 2y′X (X ′X)−1
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)
− 2β̂′R′

[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

=
[
2y′X (X ′X)−1 − 2β̂′

]
R′
[
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

+
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

=
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

since β̂′ = y′X (X ′X)−1

In sum,

n
(
σ̄2 − σ̂2

)
=
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

(23)

Now, from (14),(21) and (23);

W = σ̂−2
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

= n

(
σ̄2 − σ̂2

)
σ̂2

(24)

LM = σ−2
(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

= n

(
σ̄2 − σ̂2

)
σ̄2

(25)

For completeness, we rewrite the LR statistic;

LR = n log
σ̄2

σ̂2
(26)

7



Recall the F − statistic;

F =
(ē′ē − ê′ê) /q

ê′ê/ (n − k)
=

ē′ē − ê′ê
ê′ê

(n − k)
q

=
ē′ē
n − ê′ê

n
ê′ê
n

(n − k)
q

=
σ̄2 − σ̂2

σ̂2

(n − k)
q

(27)

From (24) and (27), we have;

F =
1
n

W
(n − k)

q
⇒ W = n

qF

(n − k)
(28)

From (25), (27), and (28), we have;

LM =
σ̂2

σ̄2
W =

σ̂2

σ̄2

qn

(n − k)
F =

n

1 + (n−k)
qF

(29)

From (26) and (27), we have;

LR = n log

⎛⎝
(
1 + qF

n−k

)
σ̂2

σ̂2

⎞⎠ = n log
(

1 +
qF

n − k

)
(30)

since σ̄2 =
(
1 + qF

n−k

)
σ̂2 from (27). Let qF

(n−k) = A. Then,

W = nA, LR = n log (1 + A) , LM = n
A

1 + A

Note that
A

1 + A
≤ log (1 + A) ≤ A

We have
LM ≤ LR ≤ W (31)

Moreover, as n → ∞,

W → qF from (28)
LM → qF from (29)
LR → qF

since

lim
n→∞LR = lim

n→∞ log
(

1 +
qF

n − k

)n

= log lim
n→∞

(
1 +

qF

n − k

)n

= log [exp (qF )] = qF
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