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Various Modes of Convergence

Definitions

• (convergence in probability) A sequence of random variables {Xn} is said to converge in probability
to a random variable X as n → ∞ if for any ε > 0 we have

lim
n→∞P [ω : |Xn (ω) − X (ω)| ≥ ε] = 0.

We write Xn
p→ X or plimXn = X.

• (convergence in distribution) Let F and Fn be the distribution functions of X and Xn, respectively.
The sequence of random variables {Xn} is said to converge in distribution to a random variable X
as n → ∞ if

lim
n→∞ Fn (z) = F (z)

for all z ∈ R and z is a continuity points of F. We write Xn
d→ X or Fn

d→ F.

• (almost sure convergence) We say that a sequence of random variables {Xn} converges almost surely
or with probability 1 to a random variable X as n → ∞ if

P
[
ω : lim

n→∞Xn (ω) = X (ω)
]

= 1.

We write Xn
a.s.→ X .

• (Lr convergence) A sequence of random variables {Xn} is said to converge in Lr norm to a random
variable X as n → ∞ if for some r > 0

lim
n→∞E [|Xn − X |r] = 0.

We denote as Xn
Lr

→ X. If r = 2, it is called mean square convergence and denoted as Xn
m.s.→ X.

Relationship among various modes of convergence

[almost sure convergence] ⇒ [convergence in probability] ⇒ [convergence in distribution]
⇑

[convergence in Lr norm]

Example 1 Convergence in distribution does not imply convergence in probability.

⇒ Let Ω = {ω1, ω2, ω3, ω4} . Define the random variables Xn and X such that

Xn (ω1) = Xn (ω2) = 1, Xn (ω3) = Xn (ω4) = 0 for all n

X (ω1) = X (ω2) = 0, X (ω3) = X (ω4) = 1

Moreover, we assign equal probability to each event. Then,

F (x) =

⎧⎨
⎩

0, if x < 0
1
2 , if 0 ≤ x < 1
1, if x ≥ 1

⎫⎬
⎭ Fn (x) =

⎧⎨
⎩

0, if x < 0
1
2 , if 0 ≤ x < 1
1, if x ≥ 1

⎫⎬
⎭

Since Fn (x) = F (x) for all n, it is trivial that Xn
d→ X. However,

lim
n→∞P

[
ω : |Xn (ω) − X (ω)| ≥ 1

2

]
= 1

Note that |Xn (ω) − X (ω)| = 1 for all n and ω. Hence, Xn
p

� X.
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Example 2 Convergence in probability does not imply almost sure convergence.

⇒ Consider the sequence of independent random variables {Xn} such that

P [Xn = 1] =
1
n

, P [Xn = 0] = 1 − 1
n

n ≥ 1

Obviously for any 0 < ε < 1, we have

P [|Xn − X | > ε] = P [Xn = 1] =
1
n
→ 0

Hence, Xn
p→ X. In order to show Xn

a.s.
� X, we need the following lemma.

Lemma 3 Xn
a.s.→ X ⇔ P (Bm (ε)) → 0 as m → ∞ for all ε > 0 where Bm (ε) =

∞⋃
n=m

An (ε) and An (ε) =

{ω : |Xn (ω) − X (ω)| > ε} .

Proof. Let C = {ω : Xn (ω) → X (ω) as n → ∞} , A (ε) = {ω : ω ∈ An (ε) i.o.} .
Then, P (C) = 1 if and only if P (A (ε)) = 0 for all ε > 0. However, Bm (ε) is a decreasing sequence of

events, Bm (ε) ↓ A (ε) as m → ∞ and so P (A (ε)) = 0 if and only if P (Bm (ε)) → ∞ as m → ∞.
Continuing the counter-example, we have

P (Bm (ε)) = 1 − lim
M→∞

P [Xn = 0 for all n such that m ≤ n ≤ M ]

= 1 −
(

1 − 1
m

) (
1 − 1

m + 1

)
· ··

= 1

Hence, Xn
a.s.
� X.

Example 4 Convergence in probability does not imply convergence in Lr − norm.

⇒ Let {Xn} be a random variable such that

P [Xn = en] =
1
n

, P [Xn = 0] = 1 − 1
n

Then, for any ε > 0 we have

P [|Xn| < ε] = 1 − 1
n
→ 1 as n → ∞

Hence, Xn
p→ 0. However, for each r > 0,

E [|Xn − 0|r] = E [Xr
n] = ern 1

n
→ ∞ as n → ∞

Hence, Xn
Lr

� 0.

Some useful theorems

Theorem 5 Let {Xn} be a random vector with a fixed finite number of elements. Let g be a real-valued

function continuous at a constant vector point α. Then Xn
p(a.s.)→ α implies g (Xn)

p(a.s.)→ g (α) .

⇒ By continuity of g at α, for any ε > 0 we can find δ such that ‖Xn − α‖ < δ implies |g (Xn) − g (α)| < ε.
Therefore,

P [‖Xn − α‖ < δ] ≤ P [|g (Xn) − g (α)| < ε] → 0 as n → ∞.
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Theorem 6 Suppose that Xn
d→ X and Yn

p→ α where α is non-stochastic. Then

(i)Xn + Yn
d→ X + α

(ii)XnYn
d→ αX

(iii)
Xn

Yn

d→ X

α
provided α is not zero.

• Note the condition that Yn
p→ α where α is non-stochastic. If α is also a random vector, Xn+Yn

d→ X+α
is not necessarily true. A counter-example is given by

P [Xn = 0] = P [Xn = 1] =
1
2

for all n

P [Yn = 0] = P [Yn = 1] =
1
2

for all n

Then,
Xn

d→ Z and Yn
d→ Z

where P [Z = 0] = P [Z = 1] = 1
2 . However,

Xn + Yn
d→ W

where P [W = 0] = P [W = 2] = 1
4 and P [W = 1] = 1

2 . Hence, W 
= 2Z.

Theorem 7 Let {Xn} be a random vector with a fixed finite number of elements. Let g be a continuous

real-valued function . Then Xn
d→ X implies g (Xn) d→ g (X) .

Theorem 8 Suppose Xn
d→ X and Xn − Yn

p→ 0, then Yn
d→ X.

Inequalities frequently used in large sample theory

Proposition 9 (Chebychev’s inequality) For ε > 0

P [|X | ≥ ε] ≤ E
(
X2

)
ε2

Proposition 10 (Markov’s inequality) For ε > 0 and p > 0

P [|X | ≥ ε] ≤ E (Xp)
εp

Proposition 11 (Jensen’s inequality) If a function φ is convex on an interval I containing the support of
a random variable X, then

φ (E (X)) ≤ E (φ (X))

Proposition 12 (Cauchy-Schwartz inequality) For random variables X and Y

E (XY )2 ≤ E
(
X2

)
E

(
Y 2

)
Proposition 13 (Hölder’s inequality ) For any p ≥ 1

E |XY | ≤ (E |X |p) 1
p (E |Y |q) 1

q

where q = p
p−1 if p > 1, and q = ∞ if p = 1.

Proposition 14 (Lianpunov’s inequality) If r > p > 0,

(E |X |r) 1
r ≥ (E |X |p) 1

p
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Proposition 15 (Minkowski’s inequality) For r ≥ 1,

(E |X + Y |r) 1
r ≤ (E |X |r) 1

r + (E |Y |r) 1
r

Proposition 16 (Loève’s cr inequality) For r > 0,

E

∣∣∣∣∣
m∑

i=1

Xi

∣∣∣∣∣
r

≤ cr

m∑
i=1

E |Xi|r

where cr = 1 when 0 < r ≤ 1, and cr = mr−1when r > 1.

Laws of Large Numbers

• Suppose we have a set of observation X1, X2, · · ·, Xn. A law of large numbers basically gives us the
behavior of sample mean Xn = 1

n

∑n
i=1 Xi when the number of observations n goes to infinity. It is

needless to say that we need some restrictions(assumptions) on the behavior of each individual random
variable Xi and on the relationship among X ′

is. There are many versions of law of large numbers
depending on what kind of restriction we are wiling to impose. The most generic version can be stated
as

Given restrictions on the dependence, heterogeniety, and moments of a sequence of

random variables {Xi} , Xn converges in some mode to a parameter value.

When the convergence is in probability sense, we call it a weak law of large numbers. When in almost
sure sense, it is called a strong law of large numbers.

• We will have a kind of trade-off between dependence or heterogeneity and existence of higher moments.
As we want to allow for more dependence and heterogeneity, we have to accept the existence of higher
moment, in general.

Theorem 17 (Komolgorov SLLN I) Let {Xi} be a sequence of independently and identically distributed
random variables. Then Xn

a.s.→ µ if and only if E (Xi) = µ < ∞.

Remark 18 The above theorem requires the existence of the first moment only. However, the restriction on
dependence and heterogeneity is quite severe. The theorem requires i.i.d.(random sample), which is rarely
the case in econometrics. Note that the theorem is stated in necessary and sufficient form. Since almost sure
convergence always implies convergence in probability, the theorem can be stated as Xn

p→ µ. Then it is a
weak law of large numbers.

Theorem 19 (Komolgorov SLLN II) Let {Xi} be a sequence of independently distributed random variables
with finite variances V ar (Xi) = σ2

i . If
∑∞

i=1
σ2

i

i2 < ∞, then Xn−µn
a.s.→ 0 where µn = E

(
Xn

)
= 1

n

∑n
i=1 µi.

Remark 20 Here we allow for the heterogeneity of distributions in exchange for existence of the second
moment. Still, they have to be independent. Intuitive explanation for the summation condition is that we
should not have variances grow too fast so that we have a shrinking variance for the sample mean.

• The existence of the second moment is too strict in some sense. The following theorem might be a
theoretical purism. But we can obtain a SLLN with milder restriction on the moments.

Theorem 21 (Markov SLLN) Let {Xi} be a sequence of independently distributed random variables with
finite means E (Xi) = µi < ∞. If for some δ > 0,

∞∑
i=1

E |Xi − µi|1+δ

i1+δ
< ∞

then, Xn − µn
a.s.→ 0.
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Remark 22 When δ = 1, the theorem collapses to Komolgorov SLLN II. Here we don’t need the existence
of the second moment. All we need is the existence of the moment of order (1 + δ) where δ > 0.

• We now want to allow some dependence among X ′
is. This modification is especially important when

we are dealing with time series data which has a lot of dependence structure in it.

Theorem 23 (Ergodic theorem) Let {Xi} be a (weakly) stationary and ergodic sequence with E |Xi| < ∞.

Then, Xn − µ
a.s.→ 0 where µ = E (Xi) .

Remark 24 By stationarity, we have E (Xi) = µ for all i. And ergodicity enables us to have, roughly
speaking, an estimate of µ as a sample mean of X ′

is. Both stationarity and ergodicity are restrictions on
dependence structure - which sometimes seem quite severe for econometric data.

• In order to allow both dependence and heterogeneity we need more specific structure on the dependence
of the data series called strong mixing and uniform mixing. The LLN’s in case of mixing requires some
technical discussion. Anyway, one of the most important SLLN’s in econometrics is McLeish’s.

Theorem 25 (McLeish) Let {Xi} be a sequence with a uniform mixing of size r
2r−1 or a strong mixing of

size r
r−1 , r > 1, with finite means E (Xi) = µi. If for some δ, 0 < δ ≤ r,

∑∞
i=1

(
E|Xi−µi|r+δ

tr+δ

) 1
r

< ∞, then

Xn − µn
a.s.→ 0.

• Another form of SLLN important in econometric application is SLLN for a martingale difference
sequence. A stochastic process Xt is called a martingale difference sequence if

E (Xt | Ft−1) = 0 for all t

where Ft−1 = σ (Xt−1, Xt−2, · · ·) i.e., information up to time (t − 1) .

Theorem 26 (Chow) Let {Xi} be a martingale difference sequence. If for some r≥ 1,
∑∞

i=1
E|Xi|2r

t1+r < ∞,

then Xn
a.s.→ 0.

Central Limit Theorems

• All CLT’s are meant to derive the distribution of sample mean as n → ∞ when appropriately scaled.
We have many versions of CLT depending on our assumptions on the data. The easiest and most
frequently cited CLT is

Theorem 27 (Lindeberg-Levy CLT) Let {Xi} be a sequence of independently and identically distributed
random variables. If V ar (Xi) = σ2 < ∞, then

√
n

(
Xn − µ

)
σ

=
1√
n

n∑
i=1

(Xi − µ)
σ

d→ N (0, 1) .

Remark 28 The conclusion of the theorem can be also written as
√

n
(
Xn − µ

) d→ N
(
0, σ2

)
. We requires

the existence of the second moment even if we have i.i.d. sample. (Compare this with LLN).

Theorem 29 (Lindeberg-Feller CLT) Let {Xi} be a sequence of independently distributed random variables
with E (Xi) = µi, V ar (Xi) = σ2

i < ∞ and distribution function Fi (x). Then
√

n
(
Xn − µn

)
σn

d→ N (0, 1)

and

lim
n→∞ max

1≤i≤n

1
n

(
σ2

i

σn

)
= 0

if and only if

lim
n→∞ σ−2

n n−1
n∑

i=1

∫
(x−µi)

2>εnσ2
n

(x − µi)
2
dFi (x) = 0.
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Remark 30 The condition is called ”Lindeberg condition”. The condition controls the tail behavior of Xi

so that we have a proper distribution for scaled sample mean. We do not need identical distribution here.
The condition is difficult to verify in practice. A search for a sufficient condition for the Lindeberg condition
leads to the following CLT.

Theorem 31 (Liapounov CLT) Let {Xi} be a sequence of independently distributed random variables with
E (Xi) = µi, V ar (Xi) = σ2

i < ∞, and E |Xi − µi|2+δ
< ∞ for some δ > 0 and all i. If σ2

n > γ > 0 for all n

sufficiently large, then
√

n(Xn−µn)
σn

d→ N (0, 1) .

Remark 32 We can show that the moment restrictions in the theorem are enough to obtain the Lindeberg
condition.

Theorem 33 Let {Xi} be a (weakly) stationary and ergodic sequence with E
(
X2

i

)
= σ2 < ∞. Suppose

that E (X0 | F−m) L2→ 0 as m → ∞ and
∑∞

j=0 (V ar [E (X0 | F−j) − E (X0 | F−j−1)])
1
2 < ∞, where F−m =

σ (· · ·, X−m−2, X−m−1.X−m) . Then, σ2
n → σ2 as n → ∞, and if σ2 > 0, then

√
nXn

σ2
d→ N (0, 1) .

Remark 34 The above theorem allows some dependence structure but retains homogeneity through station-
arity and ergodicity.

Theorem 35 (White and Domowitz) Let {Xi} be a sequence of mixing random variables such that either
uniform mixing or strong mixing is if size r

r−1 , r > 1, with E (Xi) = µi, V ar (Xi) = σ2
i < ∞, and E |Xi|2r <

∞ for all i. Define σ2
a,n = V ar

[
n− 1

2
∑a+n

i=a+1 Xi

]
. If there exists 0 < σ2 < ∞, such that σ2

a,n → σ2 as

n → ∞ uniformly in a, then
√

n(Xn−µn)
σn

d→ N (0, 1) where σn = σ2
0,n.

Remark 36 The above CLT is quite general in the sense that we can allow reasonable dependence and
heterogeneity structures to be applied to econometric data. However, as shown in the statement of the
theorem, it is impractical to check the conditions of the theorem in practice.

• Finally, we will have a CLT which can be applied to a martingale difference sequence.

Theorem 37 Let {Xi} be a martingale difference sequence such that E
(
X2

i

)
= σ2

i and E |Xi|2+δ
< ∞ for

some δ > 0 and all i. If σ2
n > γ > 0 for all n sufficiently large and 1

n

∑n
i=1 X2

i −σ2
n

p→ 0, then
√

nXn

σ2
d→ N (0, 1)

where σ2 = lim
n→∞σ2

n.

6


