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Why GLS?

• Recall the assumptions of the classical multiple regression model - especially the assumption on the
distribution of the disturbance terms;

y = Xβ + ε (1)

E (ε) = 0 E (εε′) = σ2I (2)

The zero mean assumption is not so severe that we can easily accommodate the non-zero mean by
defining the constant term differently. However, the assumption on the second moment matrix of
the disturbance terms are very restrictive; the homoskedasticity & uncorrelatedness assumption (or,
indeed, sometimes the stronger i.i.d. assumption) represented by (2) is too stringent to be applied to
most economic data.

• Alternative specification of the error term is given by;

E (ε) = 0 E (εε′) = V (3)

where V is an arbitrary positive definite symmetric matrix. The specification can nest both het-
eroskedasticity and serial correlation in disturbance terms. To see the argument in detail, consider the
explicit form of the matrix V ;

V =

⎡⎢⎢⎢⎢⎣
E
(
ε2
1

)
E (ε1ε2) · · · E (ε1εN−1) E (ε1εN )

E (ε2ε1) E
(
ε2
2

) · · · E (ε2εN−1) E (ε2εN )
· · · · · · · · · · · · · · ·

E (εN−1ε1) E (εN−1ε2) · · · E
(
ε2

N−1

)
E (εN−1εN)

E (εNε1) E (εNε2) · · · E (εNεN−1) E
(
ε2

N

)

⎤⎥⎥⎥⎥⎦ (4)

• What is the consequence of the OLS estimation with error structure (3)?

– It is still unbiased;

β̂OLS = (X ′X)−1
X ′y = β + (X ′X)−1

X ′ε

E
(
β̂OLS

)
= β + (X ′X)−1

X ′E (ε) = β

– It has different variance matrix;

V ar
(
β̂OLS

)
= E

[(
β̂OLS − β

)(
β̂OLS − β

)′]
= E

(
(X ′X)−1

X ′εε′X (X ′X)−1
)

= (X ′X)−1
X ′V X (X ′X)−1 (5)

Note that under classical assumptions; V ar
(
β̂OLS

)
= σ2 (X ′X)−1

.

– It is not BLUE. - immediate consequence of Gauss-Markov theorem.
– Since we have different variance formula as in (5), the usual t-test and F−test statistics are

invalid.
– It is still consistent as long as plimX′X

N = Q and plimX′ε
N = 0;

plimβ̂OLS = plim
[
β + (X ′X)−1

X ′ε
]

= β +
(

plim
X ′X
N

)−1

plim
X ′ε
N

= β + Q−10 = β (6)

– The asymptotic variance matrix is different from what we used to have in classical cases. The
asymptotic distribution of β̂OLS is now given by;

√
N
(
β̂OLS − β

)
d→ N

(
0,

(
X ′X
N

)−1(
X ′V X

N

)(
X ′X
N

)−1
)

(7)

as long as the probability limits of three arguments of the asymptotic variance matrix exist.
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Now, what to do?

• First of all, we will reparameterize the matrix V in slightly different way;

V = σ2Ω

we lose no generality in this reparameterization. But the reparameterization will deliver a convenient
comparison between OLS and GLS.

• Suppose that we know the complete structure of Ω, which, of course, is highly unlikely. Anyway, then
we can always find a decomposition of Ω−1 such that

L′L = Ω−1 (8)

where L is an (N × N) non-singular matrix.

• Multiplying both sides of (1) with L, we have;

Ly = LXβ + Lε (9)

We can treat Ly as dependent variable, LX as independent variables, and Lε as error terms. Then,

E (Lε) = LE (ε) = 0

V ar (Lε) = LV ar (ε)L′ = LV L′ = Lσ2ΩL′ = σ2L (L′L)−1
L′ = σ2I (10)

Note that the error terms now satisfies the assumptions of the classical regression model;

• Regressing Ly on LX gives;

β̂GLS =
[
(LX)′ (LX)

]−1
(LX)′ Ly

= [X ′L′LX ]−1 (X ′L′Ly) =
(
X ′Ω−1X

)−1 (
X ′Ω−1y

)
(11)

=
(
X ′ (σ2Ω

)−1
X
)−1 (

X ′ (σ2Ω
)−1

y
)

=
(
X ′V −1X

)−1 (
X ′V −1y

)
(12)

• Let’s check the characteristics of GLS estimator;

β̂GLS =
(
X ′V −1X

)−1 (
X ′V −1y

)
=
(
X ′V −1X

)−1
X ′V −1 [Xβ + ε]

= β +
(
X ′V −1X

)−1
X ′V −1ε

Hence,

– It is unbiased;
E
(
β̂GLS

)
= β +

(
X ′V −1X

)−1
X ′V −1E (ε) = β (13)

– Its variance is given by;

V ar
(
β̂GLS

)
= E

[(
β̂GLS − E

(
β̂GLS

))(
β̂GLS − E

(
β̂GLS

))′]
= E

[(
β̂GLS − β

)(
β̂GLS − β

)′]
= E

[(
X ′V −1X

)−1
X ′V −1εε′V −1X

(
X ′V −1X

)−1
]

=
(
X ′V −1X

)−1
X ′V −1E (εε′)V −1X

(
X ′V −1X

)−1

=
(
X ′V −1X

)−1
X ′V −1V V −1X

(
X ′V −1X

)−1
=
(
X ′V −1X

)−1

= σ2
(
X ′Ω−1X

)−1
(14)

– It is BLUE;

– It is consistent under the usual conditions; the crucial condition is again plimX′Ω−1ε
N = 0;

– Asymptotic distribution is given by;

√
N
(
β̂GLS − β

)
d→ N

(
0, σ2

(
X ′Ω−1X

N

)−1
)

(15)
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Feasible Generalized Least Squares (FGLS)

• The theory for GLS is nice. How useful is it? The answer is that it is virtually useless. The truth is
that we don’t know V or at least Ω. Then, what are we supposed to do? One universally true maxim
in econometrics is that when you have something you don’t know, estimate it!. There are a lot of
way to estimate Ω depending on the model we consider. For the moment, just assume that we have a
consistent estimator Ω̂ of Ω. We can replace Ω with Ω̂ in our procedure. The procedure is naturally
called FGLS. We can derive the asymptotic distribution of FGLS estimator under some conditions.

• Suppose that

plim
X ′Ω̂−1X

N
= Q where Q is positive definite and finite

plim
X ′Ω̂−1ε

N
= 0

then, β̂FGLS =
(
X ′Ω̂−1X

)−1

X ′Ω̂−1y is consistent. - prove it.

• Suppose that

plim
X ′
(
Ω̂−1 − Ω−1

)
X

N
= 0

plim
X ′
(
Ω̂−1 − Ω−1

)
ε

N
= 0

then,
√

N
(
β̂FGLS − β

)
d→ N

(
0, σ2

(
X ′Ω−1X

N

)−1
)

(16)

The proof is in the lecture note and you have to redo the exercise with your own pencil and paper.
The above conditions are sufficient and they are satisfied when

Ω̂
p→ Ω

Examples

• Grouping of the observations; In some cases, statistical sources group observations and publish only
average values for each group in order mainly to protect the identity of the survey subjects. However,
most economic models are usually based on individual decision making. How can we solve the problem?
Surely, we cannot solve the whole problem, but there is a lot better way to analyze the data set than
simple OLS with grouped data. Suppose the ”true” model is

y = Xβ + ε

E (ε) = 0 E (εε′) = σ2I

But, we have G group-averaged observations on
(
ỹi, X̃i

)
where i = 1, 2, · · ·, G. Suppose that we have

ni individuals in each group so that n1 + n2 + · · ·+ nG = N. Due to the data requirement, we have to
consider the model;

ỹ = X̃β + ε̃
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Clearly, we can infer that

E (ε̃) = E

⎡⎢⎢⎣
ε̃1

ε̃2

· · ·
ε̃G

⎤⎥⎥⎦ = 0

V ar (ε̃ε̃′) = E

⎡⎢⎢⎣
ε̃2
1 ε̃1ε̃2 · · · ε̃1ε̃G

ε̃1ε̃2 ε̃2
2 · · · ε̃2ε̃G

· · · · · · · · · · · ·
ε̃1ε̃G ε̃2ε̃G · · · ε̃2

G

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
σ2

n1
0 · · · 0

0 σ2

n2
· · · 0

· · · · · · · · · · · ·
0 0 · · · σ2

nG

⎤⎥⎥⎥⎦

= σ2

⎡⎢⎢⎣
1

n1
0 · · · 0

0 1
n2

· · · 0
· · · · · · · · · · · ·
0 0 · · · 1

nG

⎤⎥⎥⎦
If we know the number of individuals in each group, which is usually available, we can construct σ2Ω.
We know exact structure of Ω. The L matrix in this case is;

L =

⎡⎢⎢⎣
√

n1 0 · · · 0
0

√
n2 · · · 0

· · · · · · · · · · · ·
0 0 · · · √

nG

⎤⎥⎥⎦
• It is sometimes not reasonable to assume that the type of heteroskadasticity depends on one or a

combination of independent variables. Suppose that, for simplicity, the pattern of heteroskadasticity
is determined by j’s independent variable. Then;

y = Xβ + ε E (ε) = 0

and;

V ar (ε) = σ2

⎡⎢⎢⎣
x2

1j 0 · · · 0
0 x2

2j · · · 0
· · · · · · · · · · · ·
0 0 · · · x2

Nj

⎤⎥⎥⎦
where xij is the ith observation on the jth independent variable. Then, the GLS estimate is obtained
from;

yi

xij
= βj + β1

(
1

xij

)
+ β2

(
xi2

xij

)
+ · · ·

+ βj−1

(
xij−1

xij

)
+ βj+1

(
xij+1

xij

)
+ · · · + β2

(
xiK

xij

)
+

εi

xij

• We can also assume that the pattern of heteroskadasticity is governed by a combination of some
variables - which may include independent variables or other variables-. The specification is then;

yi = β′xi + εi i = 1, 2, · · ·, N

where β is a (k × 1) vector of parameters.. We cam specify;

E
(
ε2

i

)
= σ2 (α′zi)

2 and E (εiεj ) = 0 when i �= j

where zi is an (h × 1) vector. We still hold the independence assumption but give up homoskadasticity.
In the variance specification, both σ2 and α are unknown parameters and zi is the vector of observation
on variables z′s. We can estimate the model using GLS. The problem is that we don’t know the
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parameter α so that we don’t know Ω. If we can somehow consistently estimate α, therefore, Ω, we
can do FGLS. More appealing approach is MLE. If we assume that

εi ∼ N
(
0, σ2 (α′zi)

2
)

with serial independence. The the log likelihood function is;

L
(
β, σ2, α

)
= −N

2
log 2π − N

2
log σ2 −

N∑
i=1

α′zi − 1
2σ2

N∑
i=1

(yi − β′xi)
2

(α′zi)
2

we can estimate β, σ2,and α by differentiating the log-likelihood function. We know that the MLE are
consistent and asymptotically efficient. The asymptotic variance matrix is obtained by the inverse of
information matrix as usual. Another quite popular specification is that

εi ∼ N
(
0, σ2 exp (α′zi)

)
• We now turn to the example where we keep the homoskadasticity assumption but weaken dependence

structure of error terms. If we allow some correlations in error terms, our variance matrix of error
terms is not a diagonal matrix anymore. Do you see why? Look at the matrix (4). One of the most
popular specification of disturbance terms with serial dependence is AR(1) model;

yt = β′xt + ut

ut = ρut−1 + εt |ρ| < 1

E (εt) = 0, E
(
ε2

t

)
= σ2

ε , E (εtεs) = 0 when t �= s

Under the specification, we know that

E (ut) = 0, V ar (ut) =
σ2

ε

1 − ρ2
for all t = 1, 2, · · ·.T

Cov (ut, ut+h) =
σ2

ε

1 − ρ2
ρh, Corr (ut, ut−h) = ρh

Hence, in vector notation, the variance matrix of error terms are;

V ar (uu′) =
σ2

ε

1 − ρ2

⎡⎢⎢⎢⎢⎣
1 ρ · · · ρT−2 ρT−1

ρ 1 · · · ρT−3 ρT−2

· · · · · · · · · · · · · · ·
ρT−2 ρT−3 · · · 1 ρ
ρT−1 ρT−1 · · · ρ 1

⎤⎥⎥⎥⎥⎦

= σ2

⎡⎢⎢⎢⎢⎣
1 ρ · · · ρT−2 ρT−1

ρ 1 · · · ρT−3 ρT−2

· · · · · · · · · · · · · · ·
ρT−2 ρT−3 · · · 1 ρ
ρT−1 ρT−1 · · · ρ 1

⎤⎥⎥⎥⎥⎦ = σ2Ω

where σ2 = σ2
ε

1−ρ2 . It is know that

Ω−1 =
1

1 − ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ρ 0 0 0 · · · · · · 0
−ρ 1 + ρ2 −ρ 0 0 · · · · · · 0
0 −ρ 1 + ρ2 −ρ 0 · · · · · · 0
0 0 −ρ 1 + ρ2 −ρ · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 0 · · · 0 −ρ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5



and

L =
1√

1 − ρ2

⎡⎢⎢⎢⎢⎣
√

1 − ρ2 0 0 · · · 0
−ρ 1 0 · · · 0
0 −ρ 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · −ρ 1

⎤⎥⎥⎥⎥⎦
The estimation of the model will be discussed later.

Seemingly Unrelated Regression Estimator (SURE)

• Consider a typical utility maximization problem a consumer solves;

max U (x)

s.t. p · x ≤ w

where x is a (M × 1) vector of quantity demanded and p is the price vector. The solution to the max
problem will be given as;

x1 = f (p1, p2, · · ·, pM , w)
x2 = f (p1, p2, · · ·, pM , w)

· · · · · · · · · · · · · ··
xM = f (p1, p2, · · ·, pM , w)

• Econometrically, we would specify the model as;

x1i = f (p1t, p2t, · · ·, pMt, wt) + ε1i

x2i = f (p1t, p2t, · · ·, pMt, wt) + ε2i

· · · · · · · · · · · · · ··
xMi = f (p1t, p2t, · · ·, pMt, wt) + εNi

where i = 1, 2, · · ·, N. We may estimate each equation by OLS to get the estimates of parameters.
However, we may lose some information doing that. It is highly likely that the demand equations are
interdpendent since consumers determine the quantity demanded simultaneously, not separately. In
statistical notation, it is natural to assume that

E (εjiεli) �= 0 when j �= l (17)

We can achieve some improvement in efficiency by incorporating the information on the inter-equation
dependence into estimation procedure. The seemingly unrelated regression estimator will give us the
answer to the question of how to do that.

• Suppose that we have M system of equations;

y1 = X1β1 + ε1

y2 = X1β1 + ε2

· · · ·
yM = X1β1 + εM

where yj is (N × 1) matrix of observations on the dependent variable of the jth equation, Xj is (N × K)
is (N × Kj) matrix of observations on the independent variables of the jth equation, and εj is (N × 1)
matrix of the disturbances of the jth equation. For the notational simplicity, we will assume that each
equation has the same number of regressors, K, i.e. K1 = K2 = · · · = KM = K. We assume that error
terms are independent across observations but dependent across equations;

E (εjiεhi) = σjh for all i = 1, 2, · · ·, N
E (εjiεjl) = 0 when i �= l

E (εjrεhs) = 0 when j �= h, r �= s (18)
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• We stack the data as;⎡⎢⎢⎢⎢⎣
y1

y2

· · ·
yM−1

yM

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
X1 0 · · · 0 0
0 X2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · XM−1 0
0 0 · · · 0 XM

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

β1

β2

· · ·
βM−1

βM

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
ε1

ε2

· · ·
εM−1

εM

⎤⎥⎥⎥⎥⎦
y = Xβ + ε (19)

where y is now (MN × 1), X is (MN × MK) , β is (MK × 1) , and ε is (MN × 1)− remember each
element in matrix above is either vector or matrix itself. Let’ check the structure of the variance matrix
of ε.

•

V ar (ε) = E (εε′) = E

⎡⎢⎢⎣
ε1ε

′
1 ε1ε

′
2 ·· ε1ε

′
M

ε2ε
′
1 ε2ε

′
2 ·· ε2ε

′
M

·· ·· ·· ··
εMε′1 εMε′2 ·· εMε′M

⎤⎥⎥⎦
Remember that εrε

′
s is (N × N) matrix and V ar (ε) is (MN × MN) matrix. Let’s check what they

are.

E [εrε
′
r] = E

⎡⎢⎢⎣( εr1 εr2 ·· εrN

)⎛⎜⎜⎝
εr1

εr2

··
εrN

⎞⎟⎟⎠
⎤⎥⎥⎦

= E

⎡⎢⎢⎣
ε2

r1 εr1εr2 ·· εr1εrN

εr2εr1 ε2
r2 ·· εr2εrN

·· ·· ·· ··
εrNεr1 εrNεr2 ε2

rN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
σrr 0 ·· 0
0 σrr ·· 0
·· ·· ·· ··
0 0 0 σrr

⎤⎥⎥⎦
and

E [εrε
′
s] = E

⎡⎢⎢⎣( εr1 εr2 ·· εrN

)⎛⎜⎜⎝
εs1

εs2

··
εsN

⎞⎟⎟⎠
⎤⎥⎥⎦

= E

⎡⎢⎢⎣
εr1εs1 εr1εs2 ·· εr1εsN

εr2εs1 εr2εs2 ·· εr2εsN

·· ·· ·· ··
εrNεs1 εrNεs2 εrNεsN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
σrs 0 ·· 0
0 σrs ·· 0
·· ·· ·· ··
0 0 0 σrs

⎤⎥⎥⎦
Hence, we have

V ar (ε) =

⎡⎢⎢⎣
σ11IN σ12IN · · · σ1MIN

σ21IN σ22IN · · · σ2MIN

· · · · · · · · · · · ·
σM1IN σM2IN · · · σMM IN

⎤⎥⎥⎦

=

⎡⎢⎢⎣
σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

· · · · · · · · · · · ·
σM1 σM2 · · · σMM

⎤⎥⎥⎦⊗ IN = Σ ⊗ IN

• We can apply the GLS technique to the stacked system of equations to get;

β̂GLS =
(
X ′ (Σ ⊗ IN )−1 X

)−1 (
X ′ (Σ ⊗ IN )−1 y

)
=
(
X ′ (Σ−1 ⊗ IN

)
X
)−1 (

X ′ (Σ−1 ⊗ IN

)
y
)

since (A ⊗ B)−1 = A−1 ⊗ B−1
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Now, denote σij as the (i, j) element of Σ−1. Then,

Σ−1 ⊗ IN =

⎡⎢⎢⎣
σ11IN σ12IN · · · σ1MIN

σ21IN σ22IN · · · σ2MIN

· · · · · · · · · · · ·
σM1IN σM2IN · · · σMMIN

⎤⎥⎥⎦
Hence,

β̂GLS =

⎛⎜⎜⎝
⎡⎢⎢⎣

X ′
1 0 ·· 0

0 X ′
2 ·· 0

·· ·· ·· ··
0 0 ·· X ′

M

⎤⎥⎥⎦
⎡⎢⎢⎣

σ11IN σ12IN · · · σ1MIN

σ21IN σ22IN · · · σ2MIN

· · · · · · · · · · · ·
σM1IN σM2IN · · · σMM IN

⎤⎥⎥⎦
⎡⎢⎢⎣

X1 0 ·· 0
0 X2 ·· 0
·· ·· ·· ··
0 0 ·· XM

⎤⎥⎥⎦
⎞⎟⎟⎠

−1

×

⎡⎢⎢⎣
X ′

1 0 ·· 0
0 X ′

2 ·· 0
·· ·· ·· ··
0 0 ·· X ′

M

⎤⎥⎥⎦
⎡⎢⎢⎣

σ11IN σ12IN · · · σ1MIN

σ21IN σ22IN · · · σ2MIN

· · · · · · · · · · · ·
σM1IN σM2IN · · · σMMIN

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2

· · ·
yM

⎤⎥⎥⎦

=

⎡⎢⎢⎣
σ11X ′

1X1 σ12X ′
1X2 ·· σ1MX ′

1XM

σ21X ′
2X1 σ22X ′

2X2 ·· σ2MX ′
2XM

· · · · ·· · · · · ·· ·· · · · · ··
σM1X ′

MX1 σM2X ′
MX2 ·· σMMX ′

MXM

⎤⎥⎥⎦
−1
⎡⎢⎢⎢⎣

∑M
j=1 σ1jX ′

1yj∑M
j=1 σ2jX ′

Myj

· · · · ··∑M
j=1 σMjX ′

Myj

⎤⎥⎥⎥⎦ (20)

• The formula given above is useless in the sense that σ′
ijs are unknown. What do we do, then? Yes, we

always estimate when we have something unknown. How can we estimate the stuff? Surely, it’s got to
be consistent for σ′

ijs. We can use the OLS residuals to estimate σ′
ijs consistently. The procedure is

called Feasible SURE. The procedure is;

– Estimate each equation by OLS ignoring the inter-equation dependence.

– Calculate the residual vectors ej , j = 1, 2, · · ·, M where each ej is (N × 1) matrix.

– Calculate cross product moments of residuals such as e′iej, i, j = 1, 2, · · ·, M
– Set σ̂ij = e′

iej

N−K or σ̂ij = e′
iej

N .

– Form the matrix Σ̂ with σ̂′
ijs.

– Do FGLS with Σ̂.

β̂GLS =
(
X ′
(
Σ̂−1 ⊗ IN

)
X
)−1 (

X ′
(
Σ̂−1 ⊗ IN

)
y
)

• It is a helpful exercise to write down the likelihood function and find MLE for the model.
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