Assumptions

1. $E(y \mid X)=X \beta \Rightarrow y=X \beta+\varepsilon$
2. X is a non-stochastic $(N \times k)$ matrix with rank k.
3. $E(\varepsilon)=\mathbf{0}$
4. $E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} I$
5. $\varepsilon \sim N\left(\mathbf{0}, \sigma^{2} I\right)$

What can we derive from the assumptions?

- Under (1) and (2);

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

- Under (1) - (3);

$$
E(\widehat{\beta})=\beta
$$

- Under (1) - (4);

$$
\operatorname{Var}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}
$$

- Under (1) - (4), $\widehat{\beta}$ is BLUE. (Gauss - Markov Theorem)
- We can estimate σ^{2} with

$$
s^{2}=\frac{1}{N-k} e^{\prime} e
$$

where $e^{\prime} e=y^{\prime} y-\widehat{\beta}^{\prime} X^{\prime} X \widehat{\beta}$.
\bullet

$$
E\left(s^{2}\right)=\sigma^{2}
$$

- $e=y-X \widehat{\beta}=M y$ where $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$
- M is symmetric, idempotent, positive semi-definite with rank $(N-k)$.
- The coefficient of determination, R^{2}, is defined as

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}=1-\frac{e^{\prime} e}{y^{\prime} A y}
$$

- Under (1) - (5);

$$
\begin{aligned}
\widehat{\beta} & \sim\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) \\
\frac{(N-k) s^{2}}{\sigma^{2}} & =\frac{e^{\prime} e}{\sigma^{2}} \sim \chi^{2}(N-k)
\end{aligned}
$$

-

$$
\begin{aligned}
F & =\frac{(R \widehat{\beta}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \widehat{\beta}-r) / q}{e^{\prime} e /(N-k)} \\
& =\frac{(R \widehat{\beta}-r)^{\prime}\left[s^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \widehat{\beta}-r)}{q} \sim F(q, N-k)
\end{aligned}
$$

-

$$
F=\frac{\left(e_{R}^{\prime} e_{R}-e_{U}^{\prime} e_{U}\right) / q}{e_{U}^{\prime} e_{U} /(N-k)} \sim F(q, N-k)
$$

The least squares in mean deviation form

- If we decompose the regression as

$$
\begin{aligned}
y & =X \beta+\varepsilon \\
& =\mathbf{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
\end{aligned}
$$

-

$$
\widehat{\beta}_{2}=\left(X_{2}^{\prime} A X_{2}\right)^{-1} X_{2}^{\prime} A y
$$

-

$$
\operatorname{Var}\left(\widehat{\beta}_{2}\right)=\sigma^{2}\left(X_{2}^{\prime} A X_{2}\right)^{-1}
$$

- We can estimate σ^{2} with

$$
s^{2}=\frac{e^{\prime} e}{(N-k)}
$$

where $e^{\prime} e=y^{\prime} A y-\widehat{\beta}_{2}^{\prime} X_{2}^{\prime} A X_{2} \widehat{\beta}_{2}=y^{\prime} A y-\widehat{\beta}_{2}^{\prime} X_{2}^{\prime} A y$
-

$$
R^{2}=\frac{\widehat{\beta}_{2}^{\prime} X_{2}^{\prime} A X_{2} \widehat{\beta}_{2}}{y^{\prime} A y}=\frac{\widehat{\beta}_{2}^{\prime} X_{2}^{\prime} A y}{y^{\prime} A y}=1-\frac{e^{\prime} e}{y^{\prime} A y}
$$

Constrained least squares estimator

- Under the constraint,

$$
E(b)=E\left(\widehat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R \widehat{\beta})\right)=\beta
$$

- Under the constraint,

$$
\operatorname{Var}(b)=\sigma^{2}\left[\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right] \leq \operatorname{Var}(\widehat{\beta})
$$

Specification error

- Exclusion of relevant regressors results in the biased estimator of the included variables.
- Inclusion of irrelevant regressors does not affect the Unbiasedness of the relevant regressors but we lose some efficiency.

