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Inferences in Multiple Regression Model

• In a classical multiple regression model, we have k regressors and the inference on individual regressor
or a combination of regressors can be done in usual way through t−test. However, it might be also
required to test the joint significance of more than one regressors. One example is;

H0; β2 = 0 ∧ β3 = 0 ∧ β5 = 0 H0; β2 �= 0 ∨ β3 �= 0 ∨ β5 �= 0

It is obvious that it is impossible to test the hypothesis given above using t−test. How can we solve
the problem? The answer lies in F -test - It will be shown that the t−test procedure can be included
in this more general test procedure.

• Consider the set of linear hypotheses on the elements of β denoted as

R
(q×k)

β
(k×1)

= r
(q×1)

where q is the number of linearly independent hypotheses with q ≤ k.

Examples;

(i) βj = 0 ⇒ R =
[

0 · · · 0 1 0 · · · 0
]

and r = 0;test of validity of one regressor

(ii) β1+2β2−β3 = 1 ⇒ R =
[

1 2 −1 0 · · · 0
]

and r = 1;test of validity of linear combination
of regressors

(iii) β2 = 0, β3 = 1, β4 + β5 = 0 ⇒ R

⎡⎣ 0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 1 0 · · · 0

⎤⎦ and r =

⎡⎣ 0
1
0

⎤⎦ ; joint test

• Now, consider the testing procedure;

H0; Rβ = r HA; Rβ �= r

The starting point is the distribution of least squares estimator;

β̂ ∼ N
(
β, σ2 (X ′X)−1

)
Then, we have

Rβ̂ ∼ N
(
Rβ, σ2R (X ′X)−1

R′
)

It is easy to prove the claim, try it. Therefore,

Rβ̂ − Rβ ∼ N
(
0, σ2R (X ′X)−1

R′
)

Under the null hypothesis, Rβ = r;

Rβ̂ − r ∼ N
(
0, σ2R (X ′X)−1

R′
)

Recall the fact that (
Rβ̂ − r

)′ [
σ2R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)
∼ χ2 (q)

since ρ
(
R (X ′X)−1

R′
)

= q. However, the formula is not readily usable since it is involved in a unknown

quantity, σ2. How can we get rid of σ2 so that we have a computable test statistic? Remember that

(N − k) s2

σ2
=

e′e
σ2

∼ χ2 (N − k)
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Then, consider the following quantity;[(
Rβ̂ − r

)′ [
σ2R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

/q[
e′e
σ2

]
/ (N − k)

=

[(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

/q

e′e/ (N − k)

=

[(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

/q

s2

=

(
Rβ̂ − r

)′ [
s2R (X ′X)−1 R′

]−1 (
Rβ̂ − r

)
q

The quantity is a ratio of two χ2 random variables with each divided by degrees of freedom. It is
exactly the definition of F distribution provided that the two random variables are independent. You
can show they are actually independent as in lecture note. The degrees of freedom for F distribution
is given by (q, N − k)− F distribution requires two kinds of degrees of freedom. In sum,

(i) Compute F =
(Rβ̂−r)′

[
s2R(X′X)−1

R′
]−1

(Rβ̂−r)
q ∼ F (q, N − k)

(ii) Find the critical value for a given significance level from the table.

(iii) Reject the null hypothesis if F is larger than the critical value.

One thing to remember in the procedure is that the critical value is determined by

Fα (q, N − k)

where α is the given significance level. For example, if α = 0.95 (95%) , You have to find a value x such
that

P [F (q, N − k) ≤ x] = 0.95

This is different from t−test. The critical value in t−test is defined as, in case α = 0.95 (95%) ,

P [t (N − k) ≤ x] = 0.975

Why do we have difference? You can find the answer from the formula for F statistic. The first
thing to notice is that F statistic is always positive since it is the ratio of two positive quantities.
See the first line of the definition and note that (X ′X)−1 is positive definite. In t−test, we had both
positive and negative test statistic. Using symmetry of t distribution, we took the absolute value and
paid our attention only to positive part. What is going on with F test is that the formula for F test
itself has already taken care of the procedure so that we have only positive test statistics. Negative
part is squared and the probability of the negative part is added to positive part of the probability
distribution.

• Now, we want to derive a special form of F statistic when we have a specific form of null hypothesis;

(a)
H0; βj = 0 HA; βj �= 0

Then, R =
[

0 · · · 0 1 0 · · · 0
]

and r = 0. Therefore,

(
Rβ̂ − r

)
=

[
0 · · · 0 1 0 · · · 0

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̂1

· · ·
β̂j−1

β̂j

β̂j+1

· · ·
β̂k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 0 = β̂j
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And

s2R (X ′X)−1
R′ = s2

[
0 · · · 0 1 0 · · · 0

]
(X ′X)−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
· · ·
0
1
0
· · ·
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s2 (X ′X)−1

jj

where (X ′X)−1
jj is the (j, j) element of the matrix (X ′X)−1

. What is s2 (X ′X)−1
jj ? It is the estimate

of variance for β̂j denoted as σ̂2
βj

. Finally, we have q = 1. Then, the test statistic becomes;

f =

(
Rβ̂ − r

)′ [
s2R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)

q

=
β̂j

[
σ̂2

βj

]−1

β̂j

1
=

β̂2
j

σ̂2
βj

=

[
β̂j − 0
σ̂βj

]2

∼ F (1, N − k)

What is the quantity inside the bracket? Yes! It is the square of t statistic for the hypothesis that

H0; βj = 0 HA; βj �= 0

Our heuristic argument that F distribution is a kind of squared distribution is verified in this case.

(b) Validity of subset of regression coefficient

Another common form of hypothesis is given by;

H0; β1 = β2 = · · · = βq = 0

where q < k. The indexation of the parameters is arbitrary in that the order of regressors does not
matter in the regression. We have

(
Rβ̂ − r

)
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̂1

β̂2

· · ·
β̂q

β̂q+1

· · ·
β̂k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
· · ·
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
β̂1

β̂2

· · ·
β̂q−1

β̂q

⎤⎥⎥⎥⎥⎥⎦
And,

R (X ′X)−1
R′ =

[
(X ′X)−1

]
qq

where
[
(X ′X)−1

]
qq

is the upper left (q × q) block of (X ′X)−1
. What is the expression for

[
(X ′X)−1

]
qq

? Form the formula for inverse of a partitioned matrix;

X ′X =
[

X ′
qXq X ′

qXk−q

X ′
k−qXq X ′

k−qXk−q

]

(X ′X)−1 =

⎡⎣ (
X ′

qXq − X ′
qXk−q

(
X ′

k−qXk−q

)−1

X ′
k−qXq

)−1

· · ·
· · · · · ·

⎤⎦
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where Xq is (N × q) matrix corresponding to β1, β2, · · ·βq and Xk−q is (N × (k − q)) matrix corre-
sponding to βq+1, βq+2, · · ·βk. Then,[

(X ′X)−1
]

qq
=

(
X ′

qXq − X ′
qXk−q

(
X ′

k−qXk−q

)−1
X ′

k−qXq

)−1

=
[
X ′

q

[
I − Xk−q

(
X ′

k−qXk−q

)−1
X ′

k−q

]
Xq

]−1

=
[
X ′

qMk−qXq

]−1

Therefore, the test statistic is given by;

f =

[(
Rβ̂ − r

)′ [
R (X ′X)−1

R′
]−1 (

Rβ̂ − r
)]

/q

e′e/ (N − k)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[

β̂1 β̂2 · · · β̂q−1 β̂q

] [
X ′

qMk−qXq

]
⎡⎢⎢⎢⎢⎢⎣

β̂1

β̂2

· · ·
β̂q−1

β̂q

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
/q

e′e/ (N − k)

=
β̂q′ [X ′

qMk−qXq

]
β̂q/q

e′e/ (N − k)
∼ F (q, N − k)

where β̂q =
[

β̂1 β̂2 · · · β̂q−1 β̂q

]
. Now, consider the original regression in partitioned form;

y = Xqβ̂
q + Xk−qβ̂

k−q + e

where β̂k−q =
[

β̂q+1 β̂q+2 · · · β̂k−1 β̂k

]′
and e is again the residual vector. Multiply both sides

by Mk−q, we have

Mk−qy = Mk−qXqβ̂
q + Mk−qXk−qβ̂

k−q + Mk−qe

= Mk−qXqβ̂
q + e

since

Mk−qXk−q =
(
I − Xk−q

(
X ′

k−qXk−q

)−1
X ′

k−q

)
Xk−q = 0

Mk−qe =
(
I − Xk−q

(
X ′

k−qXk−q

)−1
X ′

k−q

)
e

= e − Xk−q

(
X ′

k−qXk−q

)−1
X ′

k−qe = e

Note that X ′e =
[

X ′
q

X ′
k−q

]
e = 0 implies that X ′

k−qe = 0. Then,

(Mk−qy)′ (Mk−qy) = y′Mk−qy =
(
Mk−qXqβ̂

q + e
)′ (

Mk−qXqβ̂
q + e

)
= β̂q′X ′

qM
′
k−qMk−qXqβ̂

q + β̂q′X ′
qM

′
k−qe + e′Mk−qXqβ̂

q + e′e

= β̂q′X ′
qM

′
k−qMk−qXqβ̂

q + β̂q′X ′
qe + e′Xqβ̂

q + e′e

= β̂q′X ′
qMk−qXqβ̂

q + e′e

since Mq is symmetric and idempotent and M ′
k−qe = e. Then,

β̂q′X ′
qMk−qXqβ̂

q = y′Mk−qy − e′e

= e∗
′
e∗ − e′e
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where e∗ is the residual vector from the regression of y on Xk−q since

y′Mk−qy = (Mk−qy)′ (Mk−qy) = e∗
′
e∗

Note that M is also called the residual generating matrix. Back to the F statistic;

F =

(
e∗

′
e∗ − e′e

)
/q

e′e/ (N − k)
∼ F (q, N − k)

The test procedure is involved in running two regressions;

(i) regress y on X and get the residual sum of squares, e′e

(ii) regress y on Xk−q−variables not restricted under the null hypothesis- and get the residual sum of
squares, e∗

′
e∗

(iii) Form the F statistic and compare it with the critical value

(c) Validity of the regression
H0; β2 = β3 = · · · = βk = 0

This is a special case of the above presentation. The null hypothesis claims that every slope coefficient
is jointly not different from zero. Now, let’s apply the result given above;

f =
β̂∗′ [X ′∗AX∗] β̂∗/ (k − 1)

e′e/ (N − k)
∼ F (k − 1, N − k)

where β̂∗ =
[

β̂2 β̂3 · · · β̂k

]′
, X∗ =

[
X2 X3 · · · Xk

]
and

A = I − 1 (1′1)−1 1′

Can you figure out why it is the case? Basically, Mk−q in this case is nothing but the projection onto
space orthogonal to space spanned by the column corresponding to the constant term, which is given
by A. Then, what is the numerator in the F statistic? Yes, it is the explained sum of squares from the
regression.

y = β̂11+X∗β̂∗ + e

Hence,
Ay = AX∗β̂∗ + Ae = AX∗β̂∗ + e

since the mean of e is always zero - remember that A transforms a variable in mean deviation form.
Then,

(Ay)′ (Ay) = y′Ay =
(
AX∗β̂∗ + e

)′ (
AX∗β̂∗ + e

)
= β̂∗′X ′

∗A
′AX∗β̂∗ + β̂∗′X ′

∗A
′e + e′AX∗β̂∗ + e′e

= β̂∗′X ′
∗AX∗β̂∗ + e′e

since A is symmetric and idempotent and A′e = 0. y′Ay =
∑N

i=1 (yi − y)2 is the definition of the total
sum of squares and e′e is the definition of the residual sum of squares. Hence,

f =
ESS/ (k − 1)
RSS/ (N − k)

=
(N − k)ESS

(k − 1)RSS
=

(N − k)
(k − 1)

ESS
TSS
RSS
TSS

=
(N − k)
(k − 1)

ESS
TSS

TSS−ESS
TSS

=
(N − k)
(k − 1)

R2

1 − R2
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Partitioned Regression

• Consider the classical multiple regression model

y = Xβ + ε

E (ε) = 0, E (εε′) = σ2I

If we partition X and β conformably to get

y = X1β1 + X2β2 + ε

where X1 is (N × l) matrix and X2 is (N × (k − l)) matrix with l < k.

• Define
M1 = I − X1 (X ′

1X1)
−1

X ′
1

and consider the regression
M1y = M1X2β2 + ε

• We claim that the least squares estimator for β2 in two regressions are identical. For the second
regression, the least square estimator is given by

β̂2 =
[
(M1X2)

′ (M1X2)
]−1 [

(M1X2)
′ (M1y)

]
= (X ′

2M1X2)
−1 (X ′

2M1y)

since M1 is symmetric and idempotent. For the first regression,

β̃ =

[
β̃1

β̃2

]
=

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]−1 [
X ′

1y
X ′

2y

]
Therefore, from the formula for the inverse of a partitioned matrix;

β̃2 = −
(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)−1

X ′
2X1 (X ′

1X1)
−1

X ′
1y

+
(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)−1

X ′
2y

=
(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)−1 (
X ′

2y − X ′
2X1 (X ′

1X1)
−1

X ′
1y

)
=

[
X ′

2

(
I − X1 (X ′

1X1)
−1

X ′
1

)
X2

]−1 [
X ′

2

(
I − X1 (X ′

1X1)
−1

X ′
1

)
y
]

= [X ′
2M1X2]

−1 [X ′
2M1y] = β̂2

What about the variance matrix, then? For the first regression,

V ar
(
β̂2

)
= σ2 (X ′

2M1X2)
−1

For the second regression, it is given by

V ar
(
β̃2

)
= σ2

[
(X ′X)−1

]
22

where
[
(X ′X)−1

]
22

is the lower right block of (X ′X)−1 which is given by

(
X ′

2X2 − X ′
2X1 (X ′

1X1)
−1

X ′
1X2

)−1

= (X ′
2M1X2)

−1

We have identical results from two different regressions.
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• Then, what does the second regression really mean? The dependent variable is M1y. This is the residual
vector from the regression

y = X1δ + ε

since
ey = y − X1δ̂ = y − X1 (X ′

1X1)
−1

X ′
1y =

[
I − X1 (X ′

1X1)
−1

X ′
1

]
y = M1y

The independent variables are M1X2 whose dimension is (N × (k − l)) . The hth column of M1X2,
h = 1, 2, · · ·, (k − l) , is the residual vector from the regression

X l+j = X1γ + ε

since
el+j = X l+j − X1 (X ′

1X1)
−1

X ′
1X

l+j = M1X
l+j

where X l+j is the (l + j)th column of X. Therefore, the regression

M1y = M1β2 + ε

is equivalent to the following procedure;

(i) regress y on X1 and get the residual vector ey

(ii) regress each column of X2 on X1 and get the residual vectors to form the matrix of the residual
vectors - this stage is involved in (k − l) separate regressions

(iii) regress ey on the residuals calculated in (ii) . The estimate we get from the exercise is the least
squares estimate of β2.

• It is a good exercise to verify that
y = X1β1 + X2β2 + ε (1)

and
M2y = M2X1β1 + ε (2)

gives us identical least squares estimator of β1.

• Multiplying both sides of (1) by M2 to obtain (2)−remember M2X2 = 0− has quite an interesting
geometric implication.
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