Econ 620

Matrix Differentiation

e Let a and z are (k x 1) vectors and A is an (k X k) matrix.

d(d'z) . 0 (a'x) ,
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d(x'Az)
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e We don’t want to prove the claim rigorously. But

k
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If you want to differentiate the function with respect to x, you have to differentiate the function with
respect to each element of vector  and form a vector -called gradient- with the result.
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You can understand % simply as the transpose of (;;) For the differentiation of the quadratic

form, consider the summation expression;
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:c’Ax:E E T

i=1 j=1

= 21011271 + 2161222 + £1013%3 + -+ - + T1A15Tk
+ X2a21%1 + T2A22T2 + T2G23%T3 + - - - + X202, Tk

+ x3a3171 + T3a3222 + r3a33%3 + - - - + T3a3,Tk

+ Trag1T1 + TpagaTe + Tpar3T3 + ¢ -+ TRArk Tk

Now, we have
0 («' Az)
——= = 2a1171 + @122 + a1373 + - - - + A1 Tk
81‘1
+ z2a21 + w3031 + - - - + Tag
= a11T1 + a12T2 + a13T3 + - - + A1pTk
+ a11x1 + a21x2 + ag1x3 + -+ -+ ap1xk
= Az + Alx = (A1 + Al) T
where A; is the first row of the matrix A and A! is the first column of the matrix A . Similarly,
0 (2 Ax)
—=—" = a21%1 + 2a22T2 + a23%3 + - - - + A2 Tk
8x2
+ x1a12 + T3az2 + - - - + Trage
= a2171 + G222 + a23T3 + - - + A2k Tk
+ a1221 + ag2x2 + as2x3 + - - - + a2k

= Aoz + A%x = (Ag —|—A2) T



You see the pattern emerging from the calculation. In general,

/
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We stack the vectors to get;
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You can verify the result for % = zz’ with a similar argument.
e Consider the least squares problem;
S(b) = (y—Xb)' (y — Xb) = (y —V'X') (y — XD)
=9y —y'Xb—V' X'y +0'X'Xb
=y'y—2y’'Xb+bX'Xb
Note that ¥’ X is a’ vector, b is x vector and X’X is A matrix in the formula above. Hence,

S (b)

= = —2X'y + |(X'X) + (xX'x) | b

= —2X'y + 2X'Xb

Least Squares Estimator in Matrix Form
e The model is given by
Yi = b1+ Bawiz + B3xiz + - - + ek + &4
E () =0,E (c}) = 0 E(gs6;) = 0 when i # j
In matrix notation

y=Xp+¢
E(e) =0,E (ee) = 0?1

e The least squares estimator is
= 1

p=X'X) X'y

e Unbiasedness of 3
E (3) [(X’X)‘1 X’y} - E [(X’X)‘1 X' (XB+e¢)

=F
_B [/3 Fxx)T X'e} — B+ (X'X) ' X'E(e) =8

e Variance of 3

var(3) = [(3-£3)) (- () | = £1(-9) (5-9)

= F {(X’X)*1 X'ee'X (X’X)*l} = (X'X) ' X'E (e¢)) X (X'X) !

=2 (X'X) ' XIX(X'X) " =02 (x'X)"!



e Residual vector and M matrix
e=y—-XB=y—-X(X'X) ' Xy=|[T-XX'X)"X'|y
= My
The matrices P = X (X’X)f1 X" and M = (I — P) are called projection matrix. Especially, P is
the projection matrix onto space spanned by columns of X and M is the projection onto the space

orthogonal to the space spanned by columns of X. When people simply say the projection matrix, they
mean P. P and M have a nice interpretation in terms of geometry..

e Properties of P and M matrix
(1)Both P and M are symmetric and idempotent. - proof is easy.
(t5) p(P)=kand p(M)=N — k.

p(P)=p (X (X'X)" X') = min (p(X),p ((X'X) ), p (X)) = min (k, b, k) = k
p(M)y=tr(M)=tr(I-P)=tr(I)—tr(P)=tr(I)—p(P)=N -k
Note that the rank of an idempotent matrix is its trace and both P and M are idempotent.
(tit)y MX =0and P+ M =1

MX = [I—X(X’X)_lX’}X:X—X(X’X)_lX’X:X—Xzo

P+M=XXX) "X+ [I X (x'x)" X’} —1

e Estimation of o2

Since ¢ is unobservable by definition, we do not know its variance o2, either. However, we can estimate
it using the sum of squared residuals.
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i=1 i=1
Note that

e= y—Xﬂ) (y—X(X’X)*X’) y = (I—X(X’X)*X’) y = My
M(XB+¢e)=MXpB+ Me = Me

Hence,
e'e = (Me) (Me) = ' M'Me = ' MMe = &' Me

Now, taking expectation on both sides,

E (e'e) = E (¢’ Me)
= E[tr (¢'Me)] since ¢’ Me is scalar
= E [tr (Me€')] since tr (AB) = tr (BA)
= tr [E (Mee')] since expectation is a linear operator
= tr [MFE (e¢')] since M is non-stochastic
=tr [Mo?I| = o*tr (M) since tr (aA) = atr (A) when a is a scalar

o?p (M) since M is idempotent

= 0% (N — k) from the argument above

Therefore, to get an unbiased estimator of o2, we propose;




Then,

E(s%) = E = =
&) =wmmfI=—mn— —°
e Distribution of s2
Fact-you can actually prove this, try-.
(N —Fk)s* ce 9
T Xk

Then,
ee
E (—2) =(N—-k)=E(ce)=0*(N —k)
o
ee
Var (—2) =2(N — k) = Var (ee) = 20" (N — k)
o
e A matrix )

A=T—-1(1"1)" "1

where 1 is an (N x 1) vector whose elements are all 1.

If we postmultiply A matrix with a vector, say y, it will results in a vector in mean deviation form:;

Ay = [I —1(r'1)”! 1’} y=y—1(1'1)"" 1y

- - - - 1-1

Y1 1 1 Y1
o Bl R I AU R A E | B SRR R A
L YN | L 1] 1 1] YN
[y ] [ 1] Y1 ]
Y2 1 1 Y2
=1 7|~ A
| YN | | 1 | YN |
r 7 N
Y1 I | Y1 U1 D1 Vi
_yN_ 1 1 —_— YN YN Zi]\ilyi
[y ] Y Yy1—y
_| v | Y || ¥y
| YN | Y YN — Y

Why do we introduce the matrix A? There is a good reason for it. Consider the classical multiple
regression model in the following form:;

pr
fa

where we partitioned X matrix into the column corresponding to the constant term,1, and the columns
corresponding to all the other regressors,Xs. Then,

(8] e (] ) (5]

11 ovx, 17N 1y
T X1 X5X, Xy

y=Xf+e=[1 X, | { ]+e—511+X262+a



What is the lower right block of the inverse matrix? From the formula for the inverse of the partitioned
matrix,

R -1
= - (X3% - X1 (1) ' UX,) X1 (1) 1y
-1
+ (XéXz - X351 (1/1)71 1/X2) Xay
-1
=- (e 7)) ey

+ [Xg (I —11'1)7! 1’) XQ} ~xyy

= — [X5AX,] T XJ1(11) T 1y + [XPAXS] T Kby

= [XpAX) ' X5 [T 1(11) 7|y = (XA [XpAy)

= (XA AX] T X3 A Ay = [(AX) (AX)] T [(AX) (4y)
Now consider another approach to the estimation;

pr

y=Xp+e=][1 XQ]{&

] +e=011+X02+¢

Premultiplying both sides with A gives;

Ay = /81A1+AX262 + Ae
= AXQﬂQ + Ae
since
Al=|1-1(1'1)7" 1’} 1=0
Now, define Ay = y*, AXy = X, and Ae = €* to get
Yy =X30+e"

The least squares estimator is given by;

Bo = (X3'X3) " X3'y* = [(AX2) (AX,)] ™ [(AX2) Ay)
= [XSA'AX,) T (XA Ay] = [X5AXs) " (X5 Ay

which is identical to the least squares estimator for (s in the original model. The transformed regression
does not include a constant term and the data used in the transformed regression is in mean deviation
forms as shown above- Ay and AX5. In sum, the slope estimates from the original regression - one
with a constant term and untransformed data- is identical to those from the transformed regression -
one without a constant term and with data in mean deviation forms. Then, what about the constant
term? The least squares estimator for the constant term is given by;

o~

B1 =7 — B2T2 — B3T3 — -+ — BiTy
which can be derived easily from the first order condition.

Variance matrix from the two regressions

In model without transformation, we know that
N Var (Bl) Cov (31,32)
var (6> | cov (31, Bg) Var (Bg)

171 1'X, }1

2 1 -1 _ 2
=0 (X'X) =0 {Xél X)X,



Therefore,

~ -1
Var (ﬂg) =0 (XgXQ - X111t 1’X2)

2 [y rq =1 47 -1 2o 1
:a[XéO—lﬂl) 1)&} = 0% [X},AX,)

The variance matrix of Bg is identical to that from the regression in mean deviation forms since

Var (B2) = o (X3'X3) " = 0* (X}AXa) !

Therefore, the two regressions result in the same estimates of the slope coefficients and variances of

the estimates.

R? in the multiple regression analysis;

R? is defined as the ratio between the explained sum of squares and the total sum of squares;

ESS RSS
2__: o
R_TSS 1 TSS

TSS is the sum of squares of variations in the dependent variable around the mean;

Hence,




