
Econ 620

Matrix Differentiation

• Let a and x are (k × 1) vectors and A is an (k × k) matrix.

∂ (a′x)
∂x

= a
∂ (a′x)

∂x′ = a′

∂ (x′Ax)
∂x

= (A + A′)x
∂ (x′Ax)
∂x∂x′ = (A + A′)

∂ (x′Ax)
∂A

= xx′

• We don’t want to prove the claim rigorously. But

a′x =
k∑

i=1

aixi

If you want to differentiate the function with respect to x, you have to differentiate the function with
respect to each element of vector x and form a vector -called gradient- with the result.

∂ (a′x)
∂x

=

⎡⎢⎢⎢⎢⎣
∂(a′x)

∂x1
∂(a′x)

∂x2· · ·
∂(a′x)

∂xk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
a1

a2

· · ·
ak

⎤⎥⎥⎦ = a

You can understand
∂(a′x)

∂x′ simply as the transpose of
∂(a′x)

∂x . For the differentiation of the quadratic
form, consider the summation expression;

x′Ax =
k∑

i=1

k∑
j=1

xiaijxj

= x1a11x1 + x1a12x2 + x1a13x3 + · · · + x1a1kxk

+ x2a21x1 + x2a22x2 + x2a23x3 + · · · + x2a2kxk

+ x3a31x1 + x3a32x2 + x3a33x3 + · · · + x3a3kxk

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··
+ xkak1x1 + xkak2x2 + xkak3x3 + · · · + xkakkxk

Now, we have

∂ (x′Ax)
∂x1

= 2a11x1 + a12x2 + a13x3 + · · · + a1kxk

+ x2a21 + x3a31 + · · · + xkak1

= a11x1 + a12x2 + a13x3 + · · · + a1kxk

+ a11x1 + a21x2 + a31x3 + · · · + ak1xk

= A1x + A1x =
(
A1 + A1

)
x

where A1 is the first row of the matrix A and A1 is the first column of the matrix A . Similarly,

∂ (x′Ax)
∂x2

= a21x1 + 2a22x2 + a23x3 + · · · + a2kxk

+ x1a12 + x3a32 + · · · + xkak2

= a21x1 + a22x2 + a23x3 + · · · + a2kxk

+ a12x1 + a22x2 + a32x3 + · · · + ak2xk

= A2x + A2x =
(
A2 + A2

)
x
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You see the pattern emerging from the calculation. In general,

∂ (x′Ax)
∂xi

=
(
Ai + Ai

)
x i = 1, 2, · · ·, k

We stack the vectors to get;

∂ (x′Ax)
∂x

=

⎡⎢⎢⎢⎢⎣
∂(x′Ax)

∂x1
∂(x′Ax)

∂x2· · ·
∂(x′Ax)

∂xk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
⎡⎢⎢⎣

A1

A2

· · ·
Ak

⎤⎥⎥⎦ +

⎡⎢⎢⎣
A1

A2

· · ·
Ak

⎤⎥⎥⎦
⎤⎥⎥⎦x = (A + A′)x

You can verify the result for
∂(x′Ax)

∂A = xx′ with a similar argument.

• Consider the least squares problem;

S (b) = (y − Xb)′ (y − Xb) = (y′ − b′X ′) (y − Xb)
= y′y − y′Xb − b′X ′y + b′X ′Xb

= y′y − 2y′Xb + b′X ′Xb

Note that y′X is a′ vector, b is x vector and X ′X is A matrix in the formula above. Hence,

S (b)
∂b

= −2X ′y +
[
(X ′X) + (X ′X)′

]
b

= −2X ′y + 2X ′Xb

Least Squares Estimator in Matrix Form

• The model is given by

yi = β1 + β2xi2 + β3xi3 + · · · + βkxik + εi

E (εi) = 0, E
(
ε2

i

)
= σ2, E (εiεj) = 0 when i �= j

In matrix notation

y = Xβ + ε

E (ε) = 0, E (εε′) = σ2I

• The least squares estimator is
β̂ = (X ′X)−1

X ′y

• Unbiasedness of β̂

E
(
β̂
)

= E
[
(X ′X)−1

X ′y
]

= E
[
(X ′X)−1

X ′ (Xβ + ε)
]

= E
[
β + (X ′X)−1

X ′ε
]

= β + (X ′X)−1
X ′E (ε) = β

• Variance of β̂

V ar
(
β̂
)

= E

[(
β̂ − E

(
β̂
))(

β̂ − E
(
β̂
))′]

= E
[(

β̂ − β
) (

β̂ − β
)]

= E
[
(X ′X)−1

X ′εε′X (X ′X)−1
]

= (X ′X)−1
X ′E (εε′)X (X ′X)−1

= σ2 (X ′X)−1
X ′IX (X ′X)−1 = σ2 (X ′X)−1
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• Residual vector and M matrix

e = y − Xβ̂ = y − X (X ′X)−1
X ′y =

[
I − X (X ′X)−1

X ′
]
y

= My

The matrices P = X (X ′X)−1
X ′ and M = (I − P ) are called projection matrix. Especially, P is

the projection matrix onto space spanned by columns of X and M is the projection onto the space
orthogonal to the space spanned by columns of X. When people simply say the projection matrix, they
mean P. P and M have a nice interpretation in terms of geometry..

• Properties of P and M matrix

(i)Both P and M are symmetric and idempotent. - proof is easy.

(ii) ρ (P ) = k and ρ (M) = N − k.

ρ (P ) = ρ
(
X (X ′X)−1

X ′
)

= min
(
ρ (X) , ρ

(
(X ′X)−1

)
, ρ (X ′)

)
= min (k, k, k) = k

ρ (M) = tr (M) = tr (I − P ) = tr (I) − tr (P ) = tr (I) − ρ (P ) = N − k

Note that the rank of an idempotent matrix is its trace and both P and M are idempotent.

(iii)MX = 0 and P + M = I

MX =
[
I − X (X ′X)−1

X ′
]
X = X − X (X ′X)−1

X ′X = X − X = 0

P + M = X (X ′X)−1
X ′ +

[
I − X (X ′X)−1

X ′
]

= I

• Estimation of σ2

Since ε is unobservable by definition, we do not know its variance σ2, either. However, we can estimate
it using the sum of squared residuals.

N∑
i=1

(
yi − β̂1 − β̂2xi2 − · · · − β̂kxik

)2

=
N∑

i=1

e2
i = e′e

Note that

e =
(
y − Xβ̂

)
=

(
y − X (X ′X)−1

X ′
)

y =
(
I − X (X ′X)−1

X ′
)

y = My

= M (Xβ + ε) = MXβ + Mε = Mε

Hence,
e′e = (Mε)′ (Mε) = ε′M ′Mε = ε′MMε = ε′Mε

Now, taking expectation on both sides,

E (e′e) = E (ε′Mε)
= E [tr (ε′Mε)] since ε′Mε is scalar
= E [tr (Mεε′)] since tr (AB) = tr (BA)
= tr [E (Mεε′)] since expectation is a linear operator
= tr [ME (εε′)] since M is non-stochastic

= tr
[
Mσ2I

]
= σ2tr (M) since tr (aA) = atr (A) when a is a scalar

= σ2ρ (M) since M is idempotent

= σ2 (N − k) from the argument above

Therefore, to get an unbiased estimator of σ2, we propose;

s2 =
e′e

(N − k)
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Then,

E
(
s2

)
=

1
(N − k)

E (e′e) =
σ2 (N − k)
(N − k)

= σ2

• Distribution of s2

Fact-you can actually prove this, try-.

(N − k) s2

σ2
=

e′e
σ2

∼ χ2 (N − k)

Then,

E

(
e′e
σ2

)
= (N − k) ⇒ E (e′e) = σ2 (N − k)

V ar

(
e′e
σ2

)
= 2 (N − k) ⇒ V ar (e′e) = 2σ4 (N − k)

• A matrix
A ≡ I − 1 (1′1)−1 1′

where 1 is an (N × 1) vector whose elements are all 1.

If we postmultiply A matrix with a vector, say y, it will results in a vector in mean deviation form;

Ay =
[
I − 1 (1′1)−1 1′

]
y = y − 1 (1′1)−1 1′y

=

⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦ −

⎡⎢⎢⎣
1
1
· · ·
1

⎤⎥⎥⎦
⎡⎢⎢⎣[

1 1 · · · 1
]⎡⎢⎢⎣

1
1
· · ·
1

⎤⎥⎥⎦
⎤⎥⎥⎦
−1 [

1 1 · · · 1
]⎡⎢⎢⎣

y1

y2

· · ·
yN

⎤⎥⎥⎦

=

⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦ −

⎡⎢⎢⎣
1
1
· · ·
1

⎤⎥⎥⎦ 1
N

[
1 1 · · · 1

]⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦

=

⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦ − 1
N

⎡⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2

· · ·
yN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦ − 1
N

⎡⎢⎢⎣
∑N

i=1 yi∑N
i=1 yi

· · ·∑N
i=1 yi

⎤⎥⎥⎦

=

⎡⎢⎢⎣
y1

y2

· · ·
yN

⎤⎥⎥⎦ −

⎡⎢⎢⎣
y
y
· · ·
y

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y1 − y
y2 − y
· · ·

yN − y

⎤⎥⎥⎦
Why do we introduce the matrix A? There is a good reason for it. Consider the classical multiple
regression model in the following form;

y = Xβ + ε =
[

1 X2

] [
β1

β2

]
+ ε = β11+X2β2 + ε

where we partitioned X matrix into the column corresponding to the constant term,1, and the columns
corresponding to all the other regressors,X2. Then,

β̂ =

[
β̂1

β̂2

]
= (X ′X)−1

X ′y =
([

1′

X ′
2

] [
1 X2

])−1 [
1′

X ′
2

]
y

=
[

1′1 1′X2

X ′
21 X ′

2X2

]−1 [
1′y
X ′

2y

]
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What is the lower right block of the inverse matrix? From the formula for the inverse of the partitioned
matrix,

β̂2 = −
(
X ′

2X2 − X ′
21 (1′1)−1 1′X2

)−1

X ′
21 (1′1)−1 1′y

+
(
X ′

2X2 − X ′
21 (1′1)−1 1′X2

)−1

X ′
2y

= −
[
X ′

2

(
I − 1 (1′1)−1 1′

)
X2

]−1

X ′
21 (1′1)−1 1′y

+
[
X ′

2

(
I − 1 (1′1)−1 1′

)
X2

]−1

X ′
2y

= − [X ′
2AX2]

−1
X ′

21 (1′1)−1 1′y + [X ′
2AX2]

−1
X ′

2y

= [X ′
2AX2]

−1
X ′

2

[
I − 1 (1′1)−1 1′

]
y = [X ′

2AX2]
−1 [X ′

2Ay]

= [X ′
2A

′AX2]
−1 [X ′

2A
′Ay] =

[
(AX2)

′ (AX2)
]−1 [

(AX2)
′ (Ay)

]
Now consider another approach to the estimation;

y = Xβ + ε =
[

1 X2

] [
β1

β2

]
+ ε = β11+X2β2 + ε

Premultiplying both sides with A gives;

Ay = β1A1+AX2β2 + Aε

= AX2β2 + Aε

since
A1 =

[
I − 1 (1′1)−1 1′

]
1 = 0

Now, define Ay = y∗, AX2 = X∗
2 , and Aε = ε∗ to get

y∗ = X∗
2β2 + ε∗

The least squares estimator is given by;

β̂2 = (X∗′
2 X∗

2 )−1
X∗′

2 y∗ =
[
(AX2)

′ (AX2)
]−1 [

(AX2)
′ Ay

]
= [X ′

2A
′AX2]

−1 [X ′
2A

′Ay] = [X ′
2AX2]

−1 [X ′
2Ay]

which is identical to the least squares estimator for β2 in the original model. The transformed regression
does not include a constant term and the data used in the transformed regression is in mean deviation
forms as shown above- Ay and AX2. In sum, the slope estimates from the original regression - one
with a constant term and untransformed data- is identical to those from the transformed regression -
one without a constant term and with data in mean deviation forms. Then, what about the constant
term? The least squares estimator for the constant term is given by;

β̂1 = y − β̂2x2 − β̂3x3 − · · · − β̂kxk

which can be derived easily from the first order condition.

• Variance matrix from the two regressions

In model without transformation, we know that

V ar
(
β̂
)

=

⎡⎣ V ar
(
β̂1

)
Cov

(
β̂1, β̂2

)
Cov

(
β̂1, β̂2

)
V ar

(
β̂2

) ⎤⎦
= σ2 (X ′X)−1 = σ2

[
1′1 1′X2

X ′
21 X ′

2X2

]−1
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Therefore,

V ar
(
β̂2

)
= σ2

(
X ′

2X2 − X ′
21 (1′1)−1 1′X2

)−1

= σ2
[
X ′

2

(
I − 1 (1′1)−1 1′

)
X2

]−1

= σ2 [X ′
2AX2]

−1

The variance matrix of β̂2 is identical to that from the regression in mean deviation forms since

V ar
(
β̂2

)
= σ2 (X∗′

2 X∗
2 )−1 = σ2 (X ′

2AX2)
−1

Therefore, the two regressions result in the same estimates of the slope coefficients and variances of
the estimates.

• R2 in the multiple regression analysis;

R2 is defined as the ratio between the explained sum of squares and the total sum of squares;

R2 =
ESS

TSS
= 1 − RSS

TSS

TSS is the sum of squares of variations in the dependent variable around the mean;

TSS =
N∑

i=1

(yi − y)2 =
N∑

i=1

(yi − y) (yi − y) = (Ay)′ (Ay) = y′Ay

On the other hand,

y′Ay = (Ay)′ (Ay) = (Aŷ + Ae)′ (Aŷ + Ae) = (Aŷ + e)′ (Aŷ + e)
= ŷ′Aŷ + e′e

Hence,

R2 =
ŷ′Aŷ

y′Ay
=

(
Xβ̂

)′
A

(
Xβ̂

)
y′Ay

=
β̂′ (X ′AX) β̂

y′Ay

= 1 − e′e
y′Ay
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