Econ 620

Matrix Differentiation

- Let a and x are $(k \times 1)$ vectors and A is an $(k \times k)$ matrix.

$$
\begin{aligned}
\frac{\partial\left(a^{\prime} x\right)}{\partial x} & =a \quad \frac{\partial\left(a^{\prime} x\right)}{\partial x^{\prime}}=a^{\prime} \\
\frac{\partial\left(x^{\prime} A x\right)}{\partial x} & =\left(A+A^{\prime}\right) x \quad \frac{\partial\left(x^{\prime} A x\right)}{\partial x \partial x^{\prime}}=\left(A+A^{\prime}\right) \\
\frac{\partial\left(x^{\prime} A x\right)}{\partial A} & =x x^{\prime}
\end{aligned}
$$

- We don't want to prove the claim rigorously. But

$$
a^{\prime} x=\sum_{i=1}^{k} a_{i} x_{i}
$$

If you want to differentiate the function with respect to x, you have to differentiate the function with respect to each element of vector x and form a vector -called gradient- with the result.

$$
\frac{\partial\left(a^{\prime} x\right)}{\partial x}=\left[\begin{array}{c}
\frac{\partial\left(a^{\prime} x\right)}{\partial x_{1}} \\
\frac{\partial\left(a^{\prime} x\right)}{\partial x_{2}} \\
\cdots \\
\frac{\partial\left(a^{\prime} x\right)}{\partial x_{k}}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\cdots \\
a_{k}
\end{array}\right]=a
$$

You can understand $\frac{\partial\left(a^{\prime} x\right)}{\partial x^{\prime}}$ simply as the transpose of $\frac{\partial\left(a^{\prime} x\right)}{\partial x}$. For the differentiation of the quadratic form, consider the summation expression;

$$
\begin{aligned}
x^{\prime} A x & =\sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} a_{i j} x_{j} \\
& =x_{1} a_{11} x_{1}+x_{1} a_{12} x_{2}+x_{1} a_{13} x_{3}+\cdots+x_{1} a_{1 k} x_{k} \\
& +x_{2} a_{21} x_{1}+x_{2} a_{22} x_{2}+x_{2} a_{23} x_{3}+\cdots+x_{2} a_{2 k} x_{k} \\
& +x_{3} a_{31} x_{1}+x_{3} a_{32} x_{2}+x_{3} a_{33} x_{3}+\cdots+x_{3} a_{3 k} x_{k} \\
& +\cdots \cdots \\
& +x_{k} a_{k 1} x_{1}+x_{k} a_{k 2} x_{2}+x_{k} a_{k 3} x_{3}+\cdots+x_{k} a_{k k} x_{k}
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{1}} & =2 a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 k} x_{k} \\
& +x_{2} a_{21}+x_{3} a_{31}+\cdots+x_{k} a_{k 1} \\
& =a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 k} x_{k} \\
& +a_{11} x_{1}+a_{21} x_{2}+a_{31} x_{3}+\cdots+a_{k 1} x_{k} \\
& =A_{1} x+A^{1} x=\left(A_{1}+A^{1}\right) x
\end{aligned}
$$

where A_{1} is the first row of the matrix A and A^{1} is the first column of the matrix A. Similarly,

$$
\begin{aligned}
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{2}} & =a_{21} x_{1}+2 a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 k} x_{k} \\
& +x_{1} a_{12}+x_{3} a_{32}+\cdots+x_{k} a_{k 2} \\
& =a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 k} x_{k} \\
& +a_{12} x_{1}+a_{22} x_{2}+a_{32} x_{3}+\cdots+a_{k 2} x_{k} \\
& =A_{2} x+A^{2} x=\left(A_{2}+A^{2}\right) x
\end{aligned}
$$

You see the pattern emerging from the calculation. In general,

$$
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{i}}=\left(A_{i}+A^{i}\right) x \quad i=1,2, \cdots, k
$$

We stack the vectors to get;

$$
\frac{\partial\left(x^{\prime} A x\right)}{\partial x}=\left[\begin{array}{c}
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{1}} \\
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{2}} \\
\cdots \\
\frac{\partial\left(x^{\prime} A x\right)}{\partial x_{k}}
\end{array}\right]=\left[\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\cdots \\
A_{k}
\end{array}\right]+\left[\begin{array}{c}
A^{1} \\
A^{2} \\
\cdots \\
A^{k}
\end{array}\right]\right] x=\left(A+A^{\prime}\right) x
$$

You can verify the result for $\frac{\partial\left(x^{\prime} A x\right)}{\partial A}=x x^{\prime}$ with a similar argument.

- Consider the least squares problem;

$$
\begin{aligned}
S(b) & =(y-X b)^{\prime}(y-X b)=\left(y^{\prime}-b^{\prime} X^{\prime}\right)(y-X b) \\
& =y^{\prime} y-y^{\prime} X b-b^{\prime} X^{\prime} y+b^{\prime} X^{\prime} X b \\
& =y^{\prime} y-2 y^{\prime} X b+b^{\prime} X^{\prime} X b
\end{aligned}
$$

Note that $y^{\prime} X$ is a^{\prime} vector, b is x vector and $X^{\prime} X$ is A matrix in the formula above. Hence,

$$
\begin{aligned}
\frac{S(b)}{\partial b} & =-2 X^{\prime} y+\left[\left(X^{\prime} X\right)+\left(X^{\prime} X\right)^{\prime}\right] b \\
& =-2 X^{\prime} y+2 X^{\prime} X b
\end{aligned}
$$

Least Squares Estimator in Matrix Form

- The model is given by

$$
\begin{aligned}
y_{i} & =\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\cdots+\beta_{k} x_{i k}+\varepsilon_{i} \\
E\left(\varepsilon_{i}\right) & =0, E\left(\varepsilon_{i}^{2}\right)=\sigma^{2}, E\left(\varepsilon_{i} \varepsilon_{j}\right)=0 \text { when } i \neq j
\end{aligned}
$$

In matrix notation

$$
\begin{aligned}
y & =X \beta+\varepsilon \\
E(\varepsilon) & =\mathbf{0}, E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} I
\end{aligned}
$$

- The least squares estimator is

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

- Unbiasedness of $\widehat{\beta}$

$$
\begin{aligned}
E(\widehat{\beta}) & =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} y\right]=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon)\right] \\
& =E\left[\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\varepsilon)=\beta
\end{aligned}
$$

- Variance of $\widehat{\beta}$

$$
\begin{aligned}
\operatorname{Var}(\widehat{\beta}) & =E\left[(\widehat{\beta}-E(\widehat{\beta}))(\widehat{\beta}-E(\widehat{\beta}))^{\prime}\right]=E[(\widehat{\beta}-\beta)(\widehat{\beta}-\beta)] \\
& =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1}\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} I X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

- Residual vector and M matrix

$$
\begin{aligned}
e & =y-X \widehat{\beta}=y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] y \\
& =M y
\end{aligned}
$$

The matrices $P=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ and $M=(I-P)$ are called projection matrix. Especially, P is the projection matrix onto space spanned by columns of X and M is the projection onto the space orthogonal to the space spanned by columns of X. When people simply say the projection matrix, they mean $P . P$ and M have a nice interpretation in terms of geometry..

- Properties of P and M matrix
(i)Both P and M are symmetric and idempotent. - proof is easy.
(ii) $\rho(P)=k$ and $\rho(M)=N-k$.

$$
\begin{aligned}
& \rho(P)=\rho\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\min \left(\rho(X), \rho\left(\left(X^{\prime} X\right)^{-1}\right), \rho\left(X^{\prime}\right)\right)=\min (k, k, k)=k \\
& \rho(M)=\operatorname{tr}(M)=\operatorname{tr}(I-P)=\operatorname{tr}(I)-\operatorname{tr}(P)=\operatorname{tr}(I)-\rho(P)=N-k
\end{aligned}
$$

Note that the rank of an idempotent matrix is its trace and both P and M are idempotent.
(iii) $M X=\mathbf{0}$ and $P+M=I$

$$
\begin{aligned}
M X & =\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] X=X-X\left(X^{\prime} X\right)^{-1} X^{\prime} X=X-X=\mathbf{0} \\
P+M & =X\left(X^{\prime} X\right)^{-1} X^{\prime}+\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]=I
\end{aligned}
$$

- Estimation of σ^{2}

Since ε is unobservable by definition, we do not know its variance σ^{2}, either. However, we can estimate it using the sum of squared residuals.

$$
\sum_{i=1}^{N}\left(y_{i}-\widehat{\beta}_{1}-\widehat{\beta}_{2} x_{i 2}-\cdots-\widehat{\beta}_{k} x_{i k}\right)^{2}=\sum_{i=1}^{N} e_{i}^{2}=e^{\prime} e
$$

Note that

$$
\begin{aligned}
e & =(y-X \widehat{\beta})=\left(y-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) y=\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) y=M y \\
& =M(X \beta+\varepsilon)=M X \beta+M \varepsilon=M \varepsilon
\end{aligned}
$$

Hence,

$$
e^{\prime} e=(M \varepsilon)^{\prime}(M \varepsilon)=\varepsilon^{\prime} M^{\prime} M \varepsilon=\varepsilon^{\prime} M M \varepsilon=\varepsilon^{\prime} M \varepsilon
$$

Now, taking expectation on both sides,

$$
\begin{aligned}
E\left(e^{\prime} e\right) & =E\left(\varepsilon^{\prime} M \varepsilon\right) \\
& =E\left[\operatorname{tr}\left(\varepsilon^{\prime} M \varepsilon\right)\right] \text { since } \varepsilon^{\prime} M \varepsilon \text { is scalar } \\
& =E\left[\operatorname{tr}\left(M \varepsilon \varepsilon^{\prime}\right)\right] \text { since } \operatorname{tr}(A B)=\operatorname{tr}(B A) \\
& =\operatorname{tr}\left[E\left(M \varepsilon \varepsilon^{\prime}\right)\right] \text { since expectation is a linear operator } \\
& =\operatorname{tr}\left[M E\left(\varepsilon \varepsilon^{\prime}\right)\right] \text { since } M \text { is non-stochastic } \\
& =\operatorname{tr}\left[M \sigma^{2} I\right]=\sigma^{2} \operatorname{tr}(M) \text { since } \operatorname{tr}(a A)=\operatorname{atr}(A) \text { when } a \text { is a scalar } \\
& =\sigma^{2} \rho(M) \text { since } M \text { is idempotent } \\
& =\sigma^{2}(N-k) \text { from the argument above }
\end{aligned}
$$

Therefore, to get an unbiased estimator of σ^{2}, we propose;

$$
s^{2}=\frac{e^{\prime} e}{(N-k)}
$$

Then,

$$
E\left(s^{2}\right)=\frac{1}{(N-k)} E\left(e^{\prime} e\right)=\frac{\sigma^{2}(N-k)}{(N-k)}=\sigma^{2}
$$

- Distribution of s^{2}

Fact-you can actually prove this, try-.

$$
\frac{(N-k) s^{2}}{\sigma^{2}}=\frac{e^{\prime} e}{\sigma^{2}} \sim \chi^{2}(N-k)
$$

Then,

$$
\begin{aligned}
E\left(\frac{e^{\prime} e}{\sigma^{2}}\right) & =(N-k) \Rightarrow E\left(e^{\prime} e\right)=\sigma^{2}(N-k) \\
\operatorname{Var}\left(\frac{e^{\prime} e}{\sigma^{2}}\right) & =2(N-k) \Rightarrow \operatorname{Var}\left(e^{\prime} e\right)=2 \sigma^{4}(N-k)
\end{aligned}
$$

- A matrix

$$
A \equiv I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}
$$

where $\mathbf{1}$ is an $(N \times 1)$ vector whose elements are all 1 .
If we postmultiply A matrix with a vector, say y, it will results in a vector in mean deviation form;

$$
\begin{aligned}
& A y=\left[I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right] y=y-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} y \\
& \left.=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]-\left[\begin{array}{c}
1 \\
1 \\
\cdots \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
\cdots \\
1
\end{array}\right]\right]^{-1}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]-\left[\begin{array}{c}
1 \\
1 \\
\cdots \\
1
\end{array}\right] \frac{1}{N}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]-\frac{1}{N}\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]-\frac{1}{N}\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} y_{i} \\
\cdots \\
\sum_{i=1}^{N} y_{i}
\end{array}\right] \\
& =\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{N}
\end{array}\right]-\left[\begin{array}{c}
\bar{y} \\
\bar{y} \\
\cdots \\
\bar{y}
\end{array}\right]=\left[\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\cdots \\
y_{N}-\bar{y}
\end{array}\right]
\end{aligned}
$$

Why do we introduce the matrix A ? There is a good reason for it. Consider the classical multiple regression model in the following form;

$$
y=X \beta+\varepsilon=\left[\begin{array}{ll}
\mathbf{1} & X_{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\varepsilon=\beta_{1} \mathbf{1}+X_{2} \beta_{2}+\varepsilon
$$

where we partitioned X matrix into the column corresponding to the constant term, $\mathbf{1}$, and the columns corresponding to all the other regressors, X_{2}. Then,

$$
\begin{aligned}
\widehat{\beta} & =\left[\begin{array}{l}
\widehat{\beta}_{1} \\
\widehat{\beta}_{2}
\end{array}\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(\left[\begin{array}{c}
\mathbf{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1} & X_{2}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
\mathbf{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right] y \\
& =\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} X_{2} \\
X_{2}^{\prime} \mathbf{1} & X_{2}^{\prime} X_{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{1}^{\prime} y \\
X_{2}^{\prime} y
\end{array}\right]
\end{aligned}
$$

What is the lower right block of the inverse matrix? From the formula for the inverse of the partitioned matrix,

$$
\begin{aligned}
\widehat{\beta}_{2} & =-\left(X_{2}^{\prime} X_{2}-X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} y \\
& +\left(X_{2}^{\prime} X_{2}-X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} y \\
& =-\left[X_{2}^{\prime}\left(I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right) X_{2}\right]^{-1} X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} y \\
& +\left[X_{2}^{\prime}\left(I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right) X_{2}\right]^{-1} X_{2}^{\prime} y \\
& =-\left[X_{2}^{\prime} A X_{2}\right]^{-1} X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} y+\left[X_{2}^{\prime} A X_{2}\right]^{-1} X_{2}^{\prime} y \\
& =\left[X_{2}^{\prime} A X_{2}\right]^{-1} X_{2}^{\prime}\left[I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right] y=\left[X_{2}^{\prime} A X_{2}\right]^{-1}\left[X_{2}^{\prime} A y\right] \\
& =\left[X_{2}^{\prime} A^{\prime} A X_{2}\right]^{-1}\left[X_{2}^{\prime} A^{\prime} A y\right]=\left[\left(A X_{2}\right)^{\prime}\left(A X_{2}\right)\right]^{-1}\left[\left(A X_{2}\right)^{\prime}(A y)\right]
\end{aligned}
$$

Now consider another approach to the estimation;

$$
y=X \beta+\varepsilon=\left[\begin{array}{ll}
\mathbf{1} & X_{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\varepsilon=\beta_{1} \mathbf{1}+X_{2} \beta_{2}+\varepsilon
$$

Premultiplying both sides with A gives;

$$
\begin{aligned}
A y & =\beta_{1} A \mathbf{1}+A X_{2} \beta_{2}+A \varepsilon \\
& =A X_{2} \beta_{2}+A \varepsilon
\end{aligned}
$$

since

$$
A \mathbf{1}=\left[I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right] \mathbf{1}=\mathbf{0}
$$

Now, define $A y=y^{*}, A X_{2}=X_{2}^{*}$, and $A \varepsilon=\varepsilon^{*}$ to get

$$
y^{*}=X_{2}^{*} \beta_{2}+\varepsilon^{*}
$$

The least squares estimator is given by;

$$
\begin{aligned}
\widehat{\beta}_{2} & =\left(X_{2}^{* \prime} X_{2}^{*}\right)^{-1} X_{2}^{* \prime} y^{*}=\left[\left(A X_{2}\right)^{\prime}\left(A X_{2}\right)\right]^{-1}\left[\left(A X_{2}\right)^{\prime} A y\right] \\
& =\left[X_{2}^{\prime} A^{\prime} A X_{2}\right]^{-1}\left[X_{2}^{\prime} A^{\prime} A y\right]=\left[X_{2}^{\prime} A X_{2}\right]^{-1}\left[X_{2}^{\prime} A y\right]
\end{aligned}
$$

which is identical to the least squares estimator for β_{2} in the original model. The transformed regression does not include a constant term and the data used in the transformed regression is in mean deviation forms as shown above- $A y$ and $A X_{2}$. In sum, the slope estimates from the original regression - one with a constant term and untransformed data- is identical to those from the transformed regression one without a constant term and with data in mean deviation forms. Then, what about the constant term? The least squares estimator for the constant term is given by;

$$
\widehat{\beta}_{1}=\bar{y}-\widehat{\beta}_{2} \bar{x}_{2}-\widehat{\beta}_{3} \bar{x}_{3}-\cdots-\widehat{\beta}_{k} \bar{x}_{k}
$$

which can be derived easily from the first order condition.

- Variance matrix from the two regressions

In model without transformation, we know that

$$
\begin{aligned}
\operatorname{Var}(\widehat{\beta}) & =\left[\begin{array}{cc}
\operatorname{Var}\left(\widehat{\beta}_{1}\right) & \operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right) \\
\operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right) & \operatorname{Var}\left(\widehat{\beta}_{2}\right)
\end{array}\right] \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} X_{2} \\
X_{2}^{\prime} \mathbf{1} & X_{2}^{\prime} X_{2}
\end{array}\right]^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{2}\right) & =\sigma^{2}\left(X_{2}^{\prime} X_{2}-X_{2}^{\prime} \mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} X_{2}\right)^{-1} \\
& =\sigma^{2}\left[X_{2}^{\prime}\left(I-\mathbf{1}\left(\mathbf{1}^{\prime} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime}\right) X_{2}\right]^{-1}=\sigma^{2}\left[X_{2}^{\prime} A X_{2}\right]^{-1}
\end{aligned}
$$

The variance matrix of $\widehat{\beta}_{2}$ is identical to that from the regression in mean deviation forms since

$$
\operatorname{Var}\left(\widehat{\beta}_{2}\right)=\sigma^{2}\left(X_{2}^{* \prime} X_{2}^{*}\right)^{-1}=\sigma^{2}\left(X_{2}^{\prime} A X_{2}\right)^{-1}
$$

Therefore, the two regressions result in the same estimates of the slope coefficients and variances of the estimates.

- R^{2} in the multiple regression analysis;
R^{2} is defined as the ratio between the explained sum of squares and the total sum of squares;

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

TSS is the sum of squares of variations in the dependent variable around the mean;

$$
T S S=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right)=(A y)^{\prime}(A y)=y^{\prime} A y
$$

On the other hand,

$$
\begin{aligned}
y^{\prime} A y & =(A y)^{\prime}(A y)=(A \widehat{y}+A e)^{\prime}(A \widehat{y}+A e)=(A \widehat{y}+e)^{\prime}(A \widehat{y}+e) \\
& =\widehat{y}^{\prime} A \widehat{y}+e^{\prime} e
\end{aligned}
$$

Hence,

$$
\begin{aligned}
R^{2} & =\frac{\widehat{y}^{\prime} A \widehat{y}}{y^{\prime} A y}=\frac{(X \widehat{\beta})^{\prime} A(X \widehat{\beta})}{y^{\prime} A y}=\frac{\widehat{\beta}^{\prime}\left(X^{\prime} A X\right) \widehat{\beta}}{y^{\prime} A y} \\
& =1-\frac{e^{\prime} e}{y^{\prime} A y}
\end{aligned}
$$

