Economics 620
Spring, 2004

Midterm
Prof. N. M. Kiefer
TA Hwan-sik Choi
You may use one sheet of formulas but not books, etc. Do not collude. Explain your answers briefly (i.e., do not just guess yes or no). All questions (a,b, etc.) count equally. Don't panic. Good luck!

1. (Warmup)
b.) a.) Prove that for Nx1 real vectors x and $y, x^{\prime} x=1$ and y ' $y=1$ together imply $1>=\left|x^{\prime} y\right|$. Hint: consider the vector $x-y \ldots$. . (>= means greater than or equal to).
c.) Use your result from a. to prove the Cauchy-Schwartz inequality: for arbitrary real vectors x and $y,\left(x^{\prime} x\right)\left(y^{\prime} y\right)>=\left(x^{\prime} y\right)^{2}$.
2. Suppose you are interested in testing the simple hypothesis H_{0} : $\mathrm{p}=1 / 4$ against the alternative $\mathrm{H}_{1}: \mathrm{p}=3 / 4$ where the observations are independent binomial draws $\left(f(x)=p^{x}(1-p)^{(1-x)}\right.$ for x in $\left.\{0,1\}\right)$. Let $\alpha=\operatorname{Pr}\left(H_{0}\right.$ rejected $\mid H_{0}$ true $)$ and $\beta=\operatorname{Pr}\left(H_{0}\right.$ not rejected $\mid H_{1}$ is true). Suppose you have one observation.
a.) What is the best test with $\alpha=1 / 4$?
b.) What is the β associated with this test?
c.) Graph the set of obtainable α, β pairs for tests based on one observation.
d.) (harder) Graph the set of obtainable α, β pairs for tests based on two observations. (even harder) Interpret briefly but accurately.
3. You have N pairs of points $\left(\mathrm{y}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$ and model their relationship linearly as $E y_{i}=\alpha+\beta x_{i}$. Having forgotten the OLS formulas (now useless on the allowed formula sheet), you reason that a line can be fit by two points, so you arrange the x_{i} in order and calculate the estimators $\alpha *$ and $\beta *$ by solving the 2 equations $\mathrm{y}_{1}=$ $\alpha+\beta \mathrm{x}_{1}$ and $\mathrm{y}_{\mathrm{N}}=\alpha+\beta \mathrm{x}_{\mathrm{N}}$ for values of (α, β).
a.) Are these estimators unbiased? b.) What is their variance? c.) Are they consistent?
In view of your results, you decide to calculate sample means for the first and second halves of the sample (luckily N is even). Let $y(1)=(2 / N) \Sigma_{i=1}^{N / 2} y_{i}, y(2)=$ $(2 / \mathrm{N}) \Sigma_{\mathrm{i}=\mathrm{N} / 2+1}{ }^{N} \mathrm{y}_{\mathrm{i}}$, and similarly for the x . You calculate estimators $\alpha * *$ and $\beta * *$ by solving $y(1)=\alpha+\beta x(1)$ and $y(2)=\alpha+\beta x(2)$.
d.) Are these estimators unbiased? e.) What is their variance? f.) Are they consistent? g.) Are they BLUE?
