Matrix Algebra and Some Distribution Theory

Economics 620 - Spring 1999

Professor N.M.Kiefer T.A.: Chang Park

1. Matrix Algebra

1.1 Partitioned matrix and its inverse

$$A + B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{bmatrix}$$

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

$$^{2} \text{ Determinant of a partitioned matrix}$$

² Determinant of a partitioned matrix

$$jAj = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
$$= jA_{22}j[A_{11}] A_{12}A_{22}^{i_1}A_{21}$$
$$= jA_{11}j[A_{22}] A_{21}A_{11}^{i_1}A_{12}$$

provided that both A_{11} and A_{22} are non-singular.

² Inverse of a partitioned matrix

Inverse of a partitioned matrix
$$A_{1}^{i} = A_{11} A_{12}^{i} A_{21}^{i} A_{22}$$

$$= F_{11}^{i} F_{11} A_{12}^{i} A_{21}^{i} A_{21}^{i}$$

$$= A_{11}^{i} A_{22}^{i} A_{21}^{i} F_{11}^{i} A_{22}^{i} A_{21}^{i} F_{11}^{i} A_{12}^{i} A_{22}^{i}^{i}$$

$$= A_{11}^{i} + A_{11}^{i} A_{12}^{i} F_{22}^{i} A_{21}^{i} A_{11}^{i} F_{22}^{i}$$

$$= A_{11}^{i} + A_{11}^{i} A_{12}^{i} F_{22}^{i} A_{21}^{i} A_{11}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{21}^{i} A_{21}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{21}^{i} A_{21}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{11}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{11}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{11}^{i} F_{22}^{i}$$

$$= A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{11}^{i} A_{12}^{i} A_{21}^{i} A_{11}^{i} A_{12}^{i} A_{11}$$

that both A_{11} and A_{22} are non-singular.

² An important application of inverse of partitioned matrix; Suppose we partition a matrix

$$X \text{ as } \underset{(n \in K)}{X} = \overset{X_1}{\underset{(n \in I)}{X_1}} \overset{X_2}{\underset{(n \in (K_i \mid I))}{X_2}} :$$

$$X^0 X = \overset{X_0^0 X_1}{\underset{X_2^0 X_1}{X_1}} \overset{X_0^0 X_2}{\underset{X_2^0 X_1}{X_2}} :$$

The upper left block (I £ I) matrix can be expressed as
$$X_{1}^{0}X_{1} \ \, i \ \, X_{1}^{0}X_{2} \ \, (X_{2}^{0}X_{2})^{i} \ \, X_{2}^{0}X_{1} \ \, i \ \, X_{2}^{0} \ \, (X_{2}^{0}X_{2})^{i} \ \, X_{2}^{0} \ \, X_{1}^{0} \ \, i \$$

where $M_2 = \prod_i X_2 (X_2^0 X_2)^{i-1} X_2^0$: The matrix M_2 plays quite an important and unique role in multiple regression model.

² M_2 is symmetric and idempotent.

$$\begin{aligned} \mathsf{M}_{2}\mathsf{M}_{2}^{0} &= \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} \; \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} \\ &= \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} \; \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} + \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} \\ &= \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} = \mathsf{M}_{2} \\ &= \mathsf{I}_{i} \; \mathsf{X}_{2} \; (\mathsf{X}_{2}^{0}\mathsf{X}_{2})^{i} \; \mathsf{X}_{2}^{0} = \mathsf{M}_{2} \end{aligned}$$

1.2 Eigenvectors and eigenvalues of real matrix

Suppose the solution of the following system of equations;

$$Ax = x$$

where A is an $(n \in n)$ square matrix, X is a non null $(n \in 1)$ vector and $\underline{\ }$ is a scalar. The S satisfying the system of equations are called eigenvalues(characteristic values, latent values) and X⁰S eigenvectors(characteristic vectors, latent vectors). We can rewrite the system as

$$(A_{i}_{x})x = 0$$

If the matrix (A; 1) is non-singular - i.e. its inverse exists, the only solution is the trivial solution, x = 0: In order for a non-trivial solution to exist, we should have a singular matrix (A_i, I) ; which implies that

$$jA_i$$
, $Ij = 0$

We can find the eigenvalues of a matrix A by expanding above determinant and solving the nth order polymonial equation.

Example;

$$A = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$$

Then,

$$A_{i} \cdot I = \begin{pmatrix} 4_{i} & 2 \\ 2 & 1_{i} \end{pmatrix}$$

Therefore,

$$jA_{i} \ Jj = (4_{i} \ J)(1_{i} \ J)_{i} \ 4 = 0$$

The solutions for the equation is given by;

$$_{1} = 5 \text{ and } _{2} = 0$$

For $_{1} = 5$;

$$\begin{bmatrix} 1 & 2 & x_1 \\ 2 & 4 & x_2 \end{bmatrix} = 0$$
) $x_1 = 2x_2$

One element in the eigenvector is always arbitrary. The usual practice is to normalize the vector so that we have unit length for the eigenvectors, i.e., $x_1^2 + x_2^2 = 1$: Then, the eigenvector corresponding to $z_1 = 5$ is

$$X_1 = \frac{x_2}{x_2}$$

For $_{2} = 0$; it is given by

Note that the matrix X whose columns consist of eigenvectors of a matrix is an orthogonal matrix - columns of the matrix are orthogonal-;

$$X = \begin{cases} \frac{3}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{cases}$$

Moreover,

$$X^{0}X = XX^{0} = I$$

and

$$X^{i}^{1} = X^{0}$$

Suppose X is (n £ n) real matrix.

- ² The sum of the eigenvalues of X is equal to the sum of its diagonal elements(trace).
- ² The product of the eigenvalues of X is equal to its determinants.
- ² The rank of X is equal to the number of its non-zero eigenvalues.
- 2 The eigenvalues of X^{i} 1 are the reciprocals of those of X; but eigenvectors are the same.
- ² Each eigenvalues of an idempotent matrix is either 0 or 1:
- ² The rank of an idempotent matrix is equal to its trace.

Now, we assume that X is $(n \in n)$ symmetric matrix as well as real.

- ² The eigenvalues of X are real.
- ² Eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal.
- ² The orthogonal matrix of eigenvectors diagonalizes X, i.e., $X = i^{0} \pi_i$ where i is $(n \in n)$ orthogonal matrix whose columns consist of eigenvectors of X and π is $(n \in n)$ diagonal matrix whose main diagonals consist of eigenvalues of X:
- ² Any symmetric positive definite matrix X can be factored into LL⁰ where L is a lower

triangular matrix. It is called the *Cholesky* decomposition.

1.3 Rank of a matrix

- ² The maximum number of linearly independent rows is equal to the maximum number of linearly independent columns. This number is the rank of the matrix, denoted by $\frac{1}{2}(X)$:
- ² $\frac{1}{2}(X)$ · min (m; n) where m and n are row and column dimensions of a matrix X:
- 2 $\frac{1}{2}(X) = \frac{1}{2}(X^{0})$:
- ² If $\frac{1}{2}(X) = m = n$; X is non-singular and a unique inverse X^{i-1} exists.
- 2 $\%(X^{0}X) = \%(XX^{0}) = \%(X)$:
- ² If P and Q are non-singular matrices of orders m and n; then $\frac{1}{2}(PXQ) = \frac{1}{2}(XQ) = \frac{1}$
- ² $\frac{1}{2}$ $\frac{1}{2}$

1.4 Kronecker products

² The Kronecker product is defined as **2**

$$A - B = \begin{cases} a_{11}B & a_{12}B & \text{(if } a_{1K}B \\ a_{21}B & a_{22}B & \text{(if } a_{2K}B \\ \text{(if } \text{(if } \text{(if } \text{(if } a_{nK}B \\ a_{n1}B & a_{n2}B & \text{(if } a_{nK}B \\ \end{cases} \end{cases}$$

- ² $(A B)^{i}$ ¹ = A^{i} ¹ B^{i} ¹ if A and B are square and non-singular.
- $^{2}(A B)^{0} = A^{0} B^{0}$:
- ² If A is (I £ I) and B is (n £ n); then $jA Bj = jAj^{I}jBj^{n}$:
- 2 tr (A B) = tr (A) tr (B):
- 2 (A B) (C D) = AC BD:
- 2 A (B + C) = A B + A C: A (B C) = (A B) C:

1.5 vec and vech operators

$$vec(X) = \begin{cases} 2 & X_1 \\ 4 & X_2 \\ 0 & 1 \end{cases}$$

$$vec(X) = \begin{cases} 4 & X_2 \\ 0 & 1 \end{cases}$$

$$X_n$$

- 2 vec (ABC) = (C 0 A) vec (B):
- ² Suppose that X is $(n \in n)$ matrix. vech operator transforms an $(n \in n)$ matrix into

h i an $\frac{n(n+1)}{2} \not\in 1$ vector by vertically stacking those elements on or below the main diagonal. For example,

1.6 Matrix Differentiation

² Let a and x are $(k \in 1)$ vectors and A is an $(k \in k)$ matrix.

$$\begin{array}{cccc} \frac{@\left(a^{0}x\right)}{@x} & = & a & \frac{@\left(a^{0}x\right)}{@x^{0}} = a^{0} \\ & & & \\ \frac{@\left(x^{0}Ax\right)}{@x} & = & \left(A + A^{0}\right)x & \frac{@\left(x^{0}Ax\right)}{@x@x^{0}} = \left(A + A^{0}\right) \\ & & & \\ \frac{@\left(x^{0}Ax\right)}{@A} & = & xx^{0} \end{array}$$

² We don't want to prove the claim rigorously. But

$$a^{0}X = X_{i=1}$$
 $a_{i}X_{i}$

If you want to differentiate the function with respect to X, you have to differentiate the function with respect to each element of vector X and form a vector -called gradient-with the result.

$$\frac{@(a^{0}x)}{@x} = \begin{cases} \frac{@(a^{0}x)}{@x_{1}} & 3 & 2 & 3 \\ \frac{@(a^{0}x)}{@(a^{0}x)} & 7 & 4 & 3 \\ \frac{@(a^{0}x)}{@x_{2}} & 7 & 4 & 4 \\ \frac{@(a^{0}x)}{@x_{k}} & 3 & 4 & 3 \\ \frac{@(a^{0}x)}{@x_{k}} & 3 & 2 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 4 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 & 4 \\ \frac{a_{1}}{a_{2}} & 7 & 4 & 3 \\ \frac{@(a^{0}x)}{@x_{k}} & 3 & 4 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 4 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 4 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 4 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\ \frac{a_{1}}{a_{2}} & 7 & 3 \\ \frac{@(a^{0}x)}{a_{2}} & 3 & 3 \\$$

You can understand $\frac{@(a^0x)}{@x^0}$ simply as the transpose of $\frac{@(a^0x)}{@x}$: For the differentiation of the quadratic form, consider the summation expression;

Now, we have

$$\begin{array}{lll} & \underbrace{@(x^{0}Ax)}_{@X_{1}} & = & 2a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \ell\ell\ell + a_{1k}x_{k} \\ & & + x_{2}a_{21} + x_{3}a_{31} + \ell\ell\ell + x_{k}a_{k1} \\ & = & a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \ell\ell\ell + a_{1k}x_{k} \\ & & + a_{11}x_{1} + a_{21}x_{2} + a_{31}x_{3} + \ell\ell\ell + a_{k1}x_{k} \\ & = & A_{1}x + A^{10}x = {}^{i}A_{1} + A^{10}{}^{\ell}x \end{array}$$

where A_1 is the first row of the matrix A and A^1 is the first column of the matrix A. Similarly,

$$\begin{array}{lll} \frac{@(x^{0}Ax)}{@x_{2}} & = & a_{21}x_{1} + 2a_{22}x_{2} + a_{23}x_{3} + \ell \ell \ell + a_{2k}x_{k} \\ & & + x_{1}a_{12} + x_{3}a_{32} + \ell \ell \ell + x_{k}a_{k2} \\ & = & a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \ell \ell \ell + a_{2k}x_{k} \\ & & + a_{12}x_{1} + a_{22}x_{2} + a_{32}x_{3} + \ell \ell \ell + a_{k2}x_{k} \\ & = & A_{2}x + A^{20}x = {}^{\mathbf{i}}A_{2} + A^{20}{}^{\mathbf{i}}x \end{array}$$

You see the pattern emerging from the calculation. In general,

$$\frac{@(x^{0}Ax)}{@x_{i}} = {}^{i}A_{i} + A^{i0}^{c}x \qquad i = 1; 2; cc; k$$

We stack the vectors to g

stack the vectors to get;
$$\frac{2}{@(x^0Ax)} = \begin{cases} \frac{@(x^0Ax)}{@x_1} & 3 & 2 & 33 \\ \frac{@(x^0Ax)}{@x_2} & \frac{(x^0Ax)}{(x^0Ax)} & \frac{7}{4} & \frac{66}{4} & \frac{7}{4} & \frac{7$$

You can verify the result for $\frac{@(x^0Ax)}{@A} = XX^0$ with a similar argument.² Consider the following minimization problem;

$$\begin{array}{lll} \underset{b}{\text{min S (b)}} &=& \underset{b}{\text{min (y }_{i} \times b)^{0}} (y_{i} \times b) \\ &=& \underset{b}{\text{min y}^{0}y_{i}} y^{0} \times b_{i} b^{0} \times^{0} y + b^{0} \times^{0} \times b \\ &=& \underset{b}{\text{min y}^{0}y_{i}} 2y^{0} \times b + b^{0} \times^{0} \times b \end{array}$$

where y is $(n \in 1)$ vector, X is $(n \in K)$ matrix whose rank is K and b is $(K \in 1)$ vector. Note that y^0X is a^0 vector, b is x vector and X^0X is A matrix in the formula above. Hence,

$$\frac{S (b)}{@b} = i 2X^{0}y + (X^{0}X) + (X^{0}X)^{0}b$$

$$= i 2X^{0}y + 2X^{0}Xb$$

Therefore, we can find the solution to the minimization problem as;

$$b^{x} = (X^{0}X)^{i} X^{0}y$$

You can check the second order condition for the minimum.

2. Some distribution theory

2.1 Multivariate normal distribution

- 2 A random vector X with values in R^{p} is multivariate normal if every linear combination of its components $^{\otimes 0}X = \bigcap_{i=1}^{p} ^{\otimes i}X_i$ follows a normal distribution on R:
- ² Every multivariate normal random vector has a finite mean $E(X) = {}^{1} 2 R^{p}$ and a finite covariance matrix V ar $(X) = \S$: We denote the random vector as $X \gg N(1; \S)$:
- ² If X » N (1; §); then (AX + b) » N (A¹ + b; A§A⁰) where A is an (I £ p) matrix and b is an (I £ 1) vector. Both of them are non-stochastic.
- ² If § is non-singular, then the density of X whose distribution is a multivariate normal

$$f(x) = \frac{1}{(2\frac{1}{2})^{\frac{p}{2}}} \frac{1}{|x|^{\frac{p}{2}}} \exp \left[\frac{1}{2} (x_i^{-1})^0 \S^{i}(x_i^{-1})\right]^{\frac{p}{2}}$$

² Suppose we can partition X into X₁ and X₂ so that
$$X = \begin{array}{c} X_1 \\ X_2 \end{array} \Rightarrow \begin{array}{c} N \\ 1 \\ 1_2 \end{array}; \begin{array}{c} S_{11} \\ S_{21} \\ S_{22} \end{array} = \begin{array}{c} \P_2 \\ \end{array}$$

Then, the marginal distributions of X_1 and X_2 are

$$X_1 \gg N(_{1}^1; \S_{11})$$
 and $X_2 \gg N(_{2}^1; \S_{22})$

² The conditional distribution are given by

$$X_1$$
 j $X_2 \gg N$ $f_{i_1}^{f_{i_1}} + S_{12}S_{22}^{i_1}(X_{2i_1})_{0}^{f_{i_2}}$; $S_{11i_1}^{f_{i_1}} S_{12}S_{22}^{i_2}S_{21}^{f_{i_2}}$
 X_2 j $X_1 \gg N$ $S_{12}^{f_{i_1}} + S_{21}S_{11}^{i_1}(X_{1i_1})_{1}$; $S_{22i_1}^{f_{i_2}} S_{21}S_{11}^{i_1}S_{12}$

2.2 Censored and truncated normal distribution

A censored normal random variable X is defined as
$$X = \begin{cases} X & \text{is defined as } X^{\alpha} \text{ if } X^{\alpha} > 0 \\ 0 & \text{otherwise} \end{cases}$$

where $X^* \gg N^{i_1}; *^{2^{c}}$: The censoring point is 0 here. But it can be any point on R:

² The density for X is given by

$$f(x) = \frac{\vec{Z}_0}{P_{\frac{1}{2\sqrt{3}\sqrt{2}}}} \exp_{i} \frac{\vec{\mu}}{2\sqrt[3]{4}} (x_i^{-1})^2 \frac{\vec{\eta}_{1i} d}{P_{\frac{1}{2\sqrt{3}\sqrt{2}}}} \exp_{i} \frac{\vec{\mu}}{2\sqrt[3]{4}} (x_i^{-1})^2$$

where d = 1 when X > 0 and d = 0 when $X \cdot 0$: © is the cumulative distribution function of standard normal and A is the density function of standard normal.

² Suppose that X is a censored normal random variable with censoring point of 0 and the

distribution of the latent variable is given by
$$X^{\alpha}_{3} \gg N^{\frac{1}{1}}; \frac{3}{4}^{2}$$
:

(i) $E(X) = \frac{3}{4}A \frac{1}{\frac{1}{4}} + \frac{1}{9} \frac{1}{\frac{3}{4}} = \frac{3}{1} \frac{3}{1} \frac{1}{\frac{3}{4}} = \frac{3}{1} \frac{3}{1} \frac{1}{\frac{3}{4}} = \frac{3}{1} \frac{3}{1} \frac{1}{\frac{3}{4}} = \frac{3}{1} \frac{3}{1} \frac{3}{1} \frac{3}{1} = \frac{3}{$

$$X = {X^{\pi} \text{ if } X^{\pi} > 0 \atop \text{not observed otherwise}}$$

where W (z) = ${R_z \atop i=1}$ © (t) dt = z© (z) + Á (z)

2 A truncated normal random variable X is defined as $X = {X^x \atop if} X^x > 0$ $X = {X^x \atop not observed otherwise}$ where $X^x > N^{i} \times N^{i}$

The density for X is given by
$$f(x) = \begin{cases} 8 \\ \frac{p \cdot 1}{2^{\frac{1}{2\sqrt{4}}}} \exp\left(i \cdot \frac{1}{2^{\frac{1}{4}}}(x_{i}^{-1})^{2}\right)}{0} = \frac{\frac{1}{4}A\left(\frac{x_{i}^{-1}}{4}\right)}{1_{i} \odot \left(i \cdot \frac{1}{4}\right)} = \frac{\frac{1}{4}A\left(\frac{x_{i}^{-1}}{4}\right)}{\odot \left(\frac{1}{4}\right)} \text{ if } X > 0 \\ 0 \text{ otherwise} \end{cases}$$

² Suppose that X is a truncated normal random variable with truncation point of 0 and the distribution of the latent variable is given by $X^{\pi} \gg N^{\frac{1}{1}}$; $\%^2$:

where $_{\ \ }(z)=\frac{\dot{A}(z)}{@(z)}$ called the Mill's ratio.

2.3 Distribution derived from the normal distribution

Â² distribution 2.3.1

 2 \hat{A}^{2} distribution with n degrees of freedom is the probability distribution of a random variable $Y = X_1 + X_2 + ff + X_n$; where the random variables X_i are independently distributed with respective distributions N $\binom{1}{i}$; 1): When $\binom{1}{i} = 0$ for all i; the chi-square distribution is said to be central, which usually called chi-square distribution without the adjective central and denoted as \hat{A}^2 (n). It is non-central otherwise, which is called denoted as \hat{A}^2 (n; $_{s}$).

² The density for a random variable X whose distribution is \hat{A}^2 (n) is

$$f(x) = \frac{x^{\frac{n}{2}i}}{2^{\frac{n}{2}}i^{\frac{1}{n}}} \exp \left[i \frac{x}{2}\right] I_{(x>0)}$$

note that \hat{A}^2 (n) is a Gamma distribution with parameter $\frac{n}{2}$:

- ² When X » $\hat{A}^2(n;); E(X) = n + and Var(X) = 2(n + 2):$
- ² Let Y be distributed as multivariate normal, Y » N (1; §) where § is non-singular, and $\frac{1}{2}$ be a symmetric matrix. Then, Y^{0} Y is distributed as a chi-square if and only if |S| = |; in which case the degrees of freedom is rank (|) and the non-centrality parameter is ¹⁰; 1:
- 2 For example, if X is an n-variate normal random variable, X » N (¹; §) with non-singular §; then X 0 §i 1 X » \hat{A}^2 1 n; 10 §i 11 : And, (X $_i$ 1) 0 §i 1 (X $_i$ 1) » \hat{A}^2 (n) : We have chosen $| = \S^{i}|^1$:

2.3.2 (Student) t distribution

- ² The t distribution with n degrees of freedom is the probability distribution of the random variable $Z = \frac{X}{Y}$ where $X \gg N$ (1; 1) and $Y \gg \hat{A}^2$ (n). X and Y are independent each other. The parameter ¹ is called non-centrality parameter and the (central) t distribution corresponds to 1 = 0 and denoted as t (n):
- ² The density of a random variable Z whose distribution is t (n) is given by

$$f(z) = \frac{i \frac{1}{n+1} c}{p_{\overline{n}_{1}} i \frac{1}{2} i \frac{1}{2} i \frac{1}{2} i 1 + \frac{z^{2}}{n} c^{\frac{n+1}{2}}}$$

- ² If Z » t (n); E (Z^p) = 0 when p is odd and p < n: E (Z^p) = $\frac{n^{\frac{p}{2}} (\frac{p+1}{2})_i (\frac{n_i}{2})_i}{(\frac{n}{2})_i (\frac{1}{2})}$ when p is even and p < n: When p = n; $E(Z^p)$ does not exist.
- Why do we need \hat{A}^2 and t? Here is a good example. Suppose X_i^0 s are i.i.d.3 with the distribution $X_i \gg N^{-\frac{1}{2}}$; $\frac{3}{4}$: It is well-known that $\frac{1}{n} = \frac{1}{n} = \frac$

$$\mathbf{e}_{\frac{\left[\frac{\mathbf{n}_{\overline{1}}}{\sqrt[3]{4}}\mathbf{i}_{\overline{X}_{\overline{1}}}\right]^{\frac{1}{4}}}{\frac{(\mathbf{n}_{\overline{1}})\mathbf{s}^{2}}{\sqrt[3]{4}} = (\mathbf{n}_{\overline{1}})}} = \frac{\frac{\mathbf{n}_{\overline{n}}}{\sqrt[3]{4}}\mathbf{i}_{\overline{X}_{\overline{1}}}^{\frac{1}{4}}}{\frac{\mathbf{s}_{\overline{1}}}{\sqrt[3]{4}}} = \frac{\mathbf{i}_{\overline{X}_{\overline{1}}}^{\frac{1}{4}}}{\frac{\mathbf{s}_{\overline{1}}}{\sqrt[3]{4}}} * t(\mathbf{n}_{\overline{1}})$$

2.4 F distribution

² The F distribution with n₁ and n₂ degrees of freedom is the probability distribution of the random variable $W = \frac{Y_1 = n_1}{Y_2 = n_2}$ where $Y_1 \gg \hat{A}^2(n_1)$ and $Y_2 \gg \hat{A}^2(n_2)$: And, Y_1 and Y_2 are independent. The distribution is denoted as $F(n_1; n_2)$:

The density for a random variable W whose distribution is F
$$(n_1; n_2)$$
 can be written as
$$f(w) = (n_1)^{\frac{n_1}{2}} (n_2)^{\frac{n_2}{2}} \frac{i}{j} \frac{i}{\frac{n_1+n_2}{2}} \frac{v}{v}^{\frac{n_1}{2}i} \frac{1}{2}$$

$$\frac{i}{j} \frac{n_1+n_2}{2} (n_2+n_1w)^{\frac{n_1+n_2}{2}}$$
If W » F $(n_1; n_2)$; E $(W^p) = \frac{n_2}{n_1} \frac{v}{i} \frac{(\frac{n_1}{2}+p)_i(\frac{n_2}{2}ip)}{(\frac{n_1}{2})_i(\frac{n_2}{2})}$:

We can define a non-central F distribution with two independent non-central chi-square distributions

- distributions.
- distributions. $\mu = \P_2$ 2 If $Z \gg t(n)$; $Z^2 = \frac{X^2 = 1}{\frac{X}{2}} = F(1; n)$ since $X^2 \gg \hat{A}^2(1)$; $Y \gg \hat{A}^2(n)$ and \boldsymbol{X} and \boldsymbol{Y} are independent by definition.