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1. Matrix Algebra

1.1 Partitioned matrix and itsinverse

2 Addition and multiplication

s

A+B = Au A, Bu Bp T_ Au+Bu Ap+Brp
A A Bai Bz Ax+Ba Ax+Bz
AB = Au A  Bu Bz T _ AuBu+ApBa AuBip+ApB;
Az Az B2a1 B2 A21Bi11 +ABa A2Bix + AxBa

2 Determinant of a partitioned matrix _

. -An A -

A - —

A Az Az _

= Az A i AAL A
= jAuj Az i AuAlAL
provided that both A;; and Az, are non-singular.
2 |nverse of apartitioned matrix

A Ap CF
Axr Ay
Fu i |:_11A12A2i2l )
i AL ANF1 ALY+ AL A FLALAL
Afll + AfllAlz F22_A21Afll i AfllAlz F22 :
i FoAnARL F2

1
Al =

i . ¢, i . ¢,
where Fi1 = IA]_]_ i A12A2'21A21 i and Foo = IA22 i AzlAfllAlz 'lprovided
that both A;; and Ay, are non-singular.
2 Animportant gpplication of inverse of partitioned matrix; Suppose we partition amatrix
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2 The upper left block (1 £ 1) matrix can be expressed as
3 - 3 - 1
One. = 30 One i1 30 il_ho- One i1 30 li1
X1X1 1 X1X2 (XZXZ) XZX:]_ - Xl I 1 Xz (XZXZ) XZ x1
a o= XIMeX]
whereM, = 1 j Xz (X3X2)#* XS : The matrix M plays quite an important and

unique role in multiple regression model.
2 Myis symgnetric and idempotent. _ s

0 _ . O 2 i1 0 . O il |
I Xo (X3%2) 5 XS i Xa (X3X2) T X + Xo (X5X2) H1 XEX, (X5X,) T4 X3
= 1§ Xo(XIX2) " XI =M,
2 MyX, =0:

1.2 Eigenvectorsand eigenvalues of real matrix

Suppose the solution of the following system of equations;
AX = _X
where Alisan (n £ n) sguare matrix, X isanon null (n £ 1) vector and , isascaar. The
_'s satisfying the system of equations are called eigenvalues(characteristic values, latent
values) and x's eigenvectors(characteristic vectors, latent vectors). We can rewrite the sys-
tem as
(Aj.DHx=0

If the matrix (A j . 1) isnon-singular - i.e. itsinverse exists, the only solution is the
trivial solution, x = O: In order for anon-trivial solution to exist, we should have asingular
matrix (A j . 1); whichimpliesthat

AT .1j=0

We can find the eigenval ues of amatrix A by expanding above determinant and solving the
nth order polymonial equation.

Example;

Then,



Therefore,
Ad=0@i.)06.)i4=0
The solutions for the equation is given by;
.1=5 and .2=0

For .1 =5; .

il 27 x° _ _

2 i 4 Xo =0 ) X1 = 2X2
One element in the eigenvector is aways arbitrary. The usual practice is to normalize

the vector so that we have unit length for the eigenvectors, i.e., X3 + x3 = 1: Then, the

eigenvector correspondingto .1 =5is

" #
X1 — %
X2 =
For ., = 0;itisgiven by ) " #
X1 ® — éﬁ
X2 i P

5
Note that the matrix X whose columns consist of eigenvectors of amatrix is an orthog-

ona matrix - columns of the matrix are grthogonal-;

X =

NS
o

-
(6]

Moreover,
XX =XX'=1

and

N N N N

N

Xit=Xx’
Suppose X is(n £ n) rea matrix.

Thesum of the eigenvaluesof X isequal to the sum of itsdiagonal elements(tr ace).
The product of the eigenvalues of X isegual to its determinants.

Therank of X isequal tothe number of itsnon-zero eigenvalues.

The eigenvalues of X i1 are the reciprocals of those of X; but eigenvectors are the
same.

Each eigenvalues of an idempotent matrix iseither 0 or 1:
Therank of an idempotent matrix isequal toitstrace.

Now, we assume that X is (n £ n) symmetric matrix aswell asreal.

The eigenvalues of X arereal.

Eigenvectors corresponding to distinct eigenval ues are pairwise orthogonal.

The orthogonal matrix of eigenvectors diagonalizes X, i.e, X = j’aj where j
is (n £ n) orthogona matrix whose columns consist of eigenvectors of X and @ is
(n £ n) diagonal matrix whose main diagonals consist of eigenvalues of X:

Any symmetric positive definite matrix X can be factored into LL" where L is alower



triangular matrix. It is called the Cholesky decomposition.

1.3 Rank of amatrix

2 The maximum number of linearly independent rows is equal to the maximum number
of linearly independent columns. This number is the rank of the matrix, denoted by
%(X):

% (X) - min(m;n) where m and n are row and column dimensions of a matrix X:
%h(X) =%(X"):

If %A (X) = m = n; X isnon-singular and auniqueinverse X it exists.

%h(X"X) =% (XX?) =%(X):

If P and Q are non-singular matrices of orders m and n; then % (P X) = %(XQ) =
H(PXQ) = %(X):

2 H(XY) - min[%(X);%(Y)]whereY is(n £ ) matrix.

N N N NN

1.4 Kronecker products

2 The Kronecker product is def?ed as

annB apB (it ajxB

a1 B a»pB (it axB
tee tee ccecce

an1B anpB (it ankB

3

A-B=

2 (A-B)i'=Ail - Bilif AandB are square and non-singular.
2 (A-B)=A'-B"

2 |f Ais(I £1) and B is(n £n); then jA — Bj = jA]' jBj":

2 tr(A-B)=tr(A)tr(B):

2 (A-B)(C - D)=AC - BD:

2 A—-(B+C)=A-B+A-C:A-(B-C)=(A-B)-_C:

15 vecand vech operators

£ o
2 Supposethat X is(m £ n) matrix expressedas X = X3 Xz (66 X,  where
Xj isthe ith column of the matrix X: The% 3

1
vec (X)=§ X2 Z
(mMn£1) tee
Xn

2 vec(ABC) = (C' — A)vec (B):
2 Suppose that X is (n £ n) matrix. vech operator transforms an (n £ n) matrix into



i
an @ £ 1 vector by vertically stacking those elements on or below the main
diagonal. For example,

2 3
ai
2 3 asn
a1 A1z ais as;
vech4 ay; ay ax; 2=
az
dz1 az2 ass
asz
ass

1.6 Matrix Differentiation

2 Letaandx are(k £ 1) vectorsand A isan (k £ k) matrix.
0@x) _ 0@ _

ox a2
@ (xXAx) 0 @ (XAx) _ 0
o = (A+A)X axaxX =(A+A)
A _
A = XX
2 Wedon't want to prove the claim rigorously. But
X
ax = ajx;

i=1
If you want to differentiate the function with respect to x, you have to differentiate the
function with respect to each element of vector x and form a vector -called gradient-

with the result.
2o 3 2 3

X1 a.]_
@ @) 0('x) g ay é
= @x2 = =a
@x tee cee
e(a%) Ak
@xk

8(e%) 8(a)

You can understand

simply as the transpose of : For the differentiation of

@x° @x -
the quadratic form, consider the summation expression;
XX
XAx = Xi@ijXj
i=1j=1

= XpauXp + X1a2Xz + Xg13X3 + 00+ X316 Xk
+Xz821X1 + Xp822X2 + Xpa23X3 + 066 + Xaak Xk
+X3831X1 + X3a32X2 + X3a33X3 + ¢ ¢ ¢ + XzazkXk
+eeeeccececoccccceceocececcecceeece
+Xpak1 X1 + XkakaXz2 + XkakaX3z + ¢ ¢ + XarkXk



Now, we have
@ (XAx)

ax = 2a1X1 +appXe +aXz + 000+ aXk
1

+Xoap1 + X3831 + (60 + Xk
= auXp +apXe +aggXz + 00+ aX
+a31Xy +azx Xy + agiXz + 06+ ara Xk
= Ax+Alx ='A + AL x
where A; isthe first row of the matrix A and Al is the first column of the matrix A .
Similarly,
@ (X"Ax)

X = a1 Xy + 2axXo + azzXs + ¢+ ar Xk
2

+Xga12 + Xzaze + 06+ Xake
= ap Xy +agpXz +azXz + 00+ ayXk
+aipX; +azpX; +azyXs + 006+ agoXk
= Ax+A%%="'A,+ A x

You see the pattern emerging from the calculation. In general,

d i s
GOA) _ A 4+ A )  i=12006k
@x;
We stack the vectorsto get;
2e(¢r) 3 22 3 2 . 33
(@3(&) ' Azo
RS BE LIE e
ix 8 0G5 £7Ad 51 g 55XT ATA)X
0(x’Ax) Ax AK
Oxk
. O(X°AX) _ g .
You can verify the result for —5z—* = xx" with asimilar argument.
Consider the following minimization problem;
minS (b)) = min(y i Xb)'(y i Xb)

= mbiny°y i Y'Xb i b +bX"Xb
= mbin Yoy i 2y"Xb +b'X Xb
wherey is (n £1) vector, X is (n £ K) matrix whose rank is K and b is (K £1)

vector. Note that y*X isa’ vector, b is x vector and X*X is A matrix in the formula
above. Hence,

h i
S@—(bb) = XYy + (XX)+(X"X)’ b

= j2X% +2X"Xb



Therefore, we can find the solution to the minimization problem as;
= (X)) Xy
You can check the second order condition for the minimum.

2. Somedistribution theory

2.1 Multivariate normal distribution

2 Arandomvector X with vql_-gesm RP ismultivariate normal if every linear combination
of its components @' X = -_1 ®;X; follows anormal distribution on R:
2 Every multivariate normal random vector has afinitemean E (X) = 1 2 RP and a
finite covariancematrix V ar (X) = 8: WedenotetherandomvectorasX » N (%; 8):
2 If X » N (%;8); then (AX +b) » N (AL + b; ASA") where A isan (I £ p) matrix
and b isan (I £ 1) vector. Both of them are non-stochastic.
2 |f 8 isnon-singular, then the density of X whose distribution is a multivariate normal
is
f(x)= —p— exp il(X i 1)'8 (xj 1),
(2%)7 * det8
2 Suppose we can partmon X into X3 and X, so that

- K
X1 1, §11 81
X = N
X, 12 " 8y 8&»

Then , the margind distributions of X; and X, are
X1 » N (*1;811) and Xz » N (%5 822)
2 The conditional distribution are given by )
X1 j Xa»N !11 + 81,85 (X5 i 12)¢: !§11 i §12§2521§21¢n
Xo | Xi»N L+ 8u8[ (X1 i L) 5 82 i SuSi 8

1.

2.2 Censored and truncated normal distribution

2 A censored normal random varlabj/ex is defined 8y,
X%if X" >0

X = 0 otherwise

i ¢
where X" » N I1; %2 : The censoring point is 0 here. But it can be any point on R:
2 Thedensity for X isgiven by

Z o M MT.1id- H T.q
f(x) = 191— xp i (X § 1)’ P exp i (X i 1)’
i1 Y2 292 Y2 292



h 3 1'i1ad'1,”xi1‘Ide h1 ©31,ilid.1'uXil‘”,d

"% % % % % %
whered = 1 when X > 0andd = 0 when X - 0: © isthe cumulative distribution
function of standard normal and A is the density function of standard normal.

2 Supposethat X isacensored normal random variable with ce@sorl ng point of 0 and the
distribution of the latent variableis %ven by X“3» N ;%2

E (X 3/A—+3'-©—
(i) E(X) Ah%,l%3, o

— +_W — W2 _
©3/4 3/4W3/4|W

where W (z) = RZ L OMdt=20(2) +A(2)
2 A truncated normal random vgrlablex isdefined as
X7ifX">0
not observed otherwise

(i) Var (X)

Ya
X =

i ¢
where X" » N I1; %2 : The truncation point is 0 here. But it can be any point on R:
2 ThedensiWé‘or X isgiven by

P exp(i 4 (i )?) ey 2 2
< .F T OAN) | BACE) | BACEE) L g =
fO)=_ o PIsep(izzxi?)?) 1i ©(-7) o(z) -

- O otherwise

2 Suppose that X is atruncated normal random varlabIeW|IIh truQcaruon point of 0 and
the distribution of the latent variableis given by X% » N 1;%2

|1

M) EC) = 2+ucile
IR e

(ii) Var (X) ¥2

lig. g 0.7 g

where _ (z) = ggg called the Mill’s ratio.

2.3 Distribution derived from the normal distribution

231 A?distribution

2 A? distribution with n degrees of freedom is the probability distribution of a random
variableY = X; + X, +(¢¢+ X,; where the random variables X; are independently
distributed with respectivedistributionsN (%;; 1) : When1; = 0for &l i; the chi-square
distribution is said to be central, which usually called chi-square distribution without
the adjective central and denoted as A2 (n). It is non-central otherwise, W't_)LCh iscaled
non-central chi-square distribution with non-centrality parameter , = !‘_1 12 and

denoted as A2 (n; ).



2 The density for arandom variable X whose distribution is A2 (n) is
5 -

xzil X
f (X) = ZQ—_|?¢ exp ix 1(X>0)
2 1 5 2

note that A2 (n) is a Gamma distribution with parameter N

2 WhenX » A2(n; );E(X)=n+ _andVar(X)=2(n+2.):

2 LetY bedigributed as multivariate normal, Y > N (%; 8) where 8 is non-singular,
and ! be asymmetric matrix. Then, Y’ !Y isdistributed as a chi-square if and only if
1 81 = 1, inwhich case the degrees of freedom is rank ( ;) and the non-centrality
parameter is 1011

2 For example, |f X isan n- varlate normal rgndom variable, X » N (%; 8) with non-
singular §: then X"§ 11X » A2 'n; 218112 : And, (X j 1)"8i1 (X j 1) » A2(n):
Wehavechosen ! = §il:

232  (Student) t distribution

2 Thet distributionwith n degreesof freedomisthe probability distribution of therandom
variable Z = PS5 where X » N (%;1) and Y » A?(n). X and Y are independent

each other. The p':'arameter 1 is called non-centrality parameter and the (central) t dis-
tribution correspondsto + = 0 and denoted ast (n) :
2 Thedensity of arandom variable Z whose distributionis t (n) is given by
. n+a

I ™

1 1 1
PSS
1 2 n

O =p

NIJ

n%i(251)i(752)

2 |fz »t(n);E(Zp)=Owhenpisoddandp<n:E(Zp)=#f(l)zwhen
i\z2)i\3

pisevenandp < n: Whenp _ n; E (ZP) does not exist.
2 Why do we need A? and t? Here is a good example. Slgppose Xs arei.i.d.awith the

distribution X; » N '1;%2 " : It is well-known that 170 X=X »N 1%

P ¢
Moreover, 0D 55 A2 (n j 1) wheres? = -1~ ™ 'X; § X *: In addition, we

nil
can show that X and s? areindependent. Hence,
P- i ¢ P i ¢ i— ¢
w5 Xit o Xit _Xit .
= = < =5 »t(nijl)
Q== i) " n

2.4 Fdistribution

2 TheF distribution with n; and n, degrees of freedom isthe probability distribution of
the random variable W = Yl ”1 where Y1 » A? (n;1) and Y, » A% (n,) : And, Yiand
Y, areindependent. The dlstrl butlon isdenoted asF (n1;ny):



N

N

The density for arandom variable W whose distributionisF (ny; n2) can bewritten as

.in]+n2 LA

n n2 1 w=z 1

fw)=()? (n)? ———% e
L A 21 F (ermw)e

2
IfW » F (ng;ny); E (WP) = %i p%
i\z)i\=
We can defineanon-central F distribution with two independent non-central chi-square

distributions. u 1,

FZ »t(n);22= PSS = XL = F(Ln)since X2 » A2(1);Y » AZ(n)

and X and Y are indepen&]ent by definition.
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