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Economics 620, Lecture 9:

Asymptotics III: Maximum Likelihood Estimation

Jensen�s Inequality : Suppose X is a random variable
with E(X) = �, and f is a convex function. Then

E(f(X)) > f(E(X)).

This inequality will be used to get the consistency of the
ML estimator.
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Model and Assumptions

Let p(xj�) be the probability density function of X given
the parameter.

Consider a random sample of n observations and let

`(�jx1; x2; :::; xn) =
Pn
i=1 ln p(xij�)

be the log likelihood function.

Assume �0 is the true value and that d ln p=d� exists in an
interval including �0, furthermore, make the assumptions:

Assumption 1 :

d ln p

d�
;
d2 ln p

d�2
;
d3 ln p

d�3

exist in an interval including �0.
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Model and Assumptions2

Assumption 2 :

E

 
p0

p
j�
!
= 0;E

 
p00

p
j�
!
= 0;E

 
p02

p
j�
!
> 0

where p0 = dp=d� and p00 = d2p=d�2. These usually
hold in the problems we will see.

Assumption 3 :�����d3 ln pd�3

����� < M(x) where E[M(x)] < K.

This is a technical assumption. It will control the ex-
pected error in Taylor expansions.
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Consistency

We can get the consistency of the ML estimator immedi-
ately. We will use assumptions 1-3 to get the asymptotic
normality of a consistent estimator in general and the ML
estimator in particular.

Suppose �� is an estimator for �. We would like to require
that the probability of �� being close to the true value of
� (i.e., �0) should increase as the sample size increases.

De�nition: As estimator �� is said to be consistent for �0
if plim �� = �0.
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Consistency 2

Proposition: If ln p is di¤erentiable, then the ML equa-
tion

d`

d�
= 0

(�rst order condition) has a root with probability 1 which
is consistent for �, i.e., the ML estimator for � is consis-
tent.

Proof. Using Jensen�s inequality for concave functions

E ln

"
p(�0 � �)
p(�0)

j�0
#
< 0; E ln

"
p(�0 + �)

p(�0)
j�0
#
< 0

where � is a small number.
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Consistency 3

The inequality is strict unless p does not depend on. To
see this, note that

E ln

"
p(�0 + �)

p(�0)

#
< lnE

"
p(�0 + �)

p(�0)

#
= ln

Z
p(�0 + �)dx = ln 1 = 0:

Then noting the de�nition of `(�) and using SLLN,

lim
�
1

n
[`(�0 � �)� `(�0)]

�
< 0

`(�) has a local maximum at �0 in the limit.

Implying that the �rst order condition is satis�ed at �0
in the limit.

Note that we have not shown that the MLE is a global
max �this requires more conditions.
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Asymptotic Normality of Consistent Estimators

Proposition: Let

�E
"
d2 ln p

d�20

#
= E

24 d ln p
d�0

!235 = i(�0):

Let �� be the consistent MLE estimator for �. Then

p
n

"
(�� � �0)i(�0)�

1

n

d`

d�0

#
! 0

in probability.
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Asymptotic Normality of Consistent Estimators 2

Proof : From the �rst order condition, we get the fol-
lowing expansion:

0 =
d`

d�0
+ (�� � �0)

d`

d�20
+
(�� � �0)2

2

d3`

d�30

)
p
n(�� � �) =

� 1p
n
d`
d�0

1
n

�
d2`
d�20

+
(����0)
2

d3`
d�30

�

Taking the probability limit we note that the �rst ex-
pression in the denominator converges to �i(�0) and
the second expression in the denominator converges to
0. (Why?)
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Asymptotic Normality of Consistent Estimators 3

Proposition: (Asymptotic Normality)
p
n(�� � �0)! N(0; i(�0)

�1)

Proof. Note that
p
n(����0)i(�0) has the same asymp-

totic distribution as

1
p
n

d`

d�0
=
p
n

 
1

n

P d ln p

d�0

!
:

We know that

E

"
d ln p

d�0

#
= 0

sinceZ
p(xj�0)dx = 1)

Z
p0dx = 0 = E

"
d ln p

d�0

#
:
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Asymptotic Normality of Consistent Estimators 4

Note that di¤erentiating
R
p d ln p dx = 0 again implies

that Z
p

 
p0

p

!
d ln p dx+

Z
p d2 ln p dx = 0:

The �rst term is just the variance of d ln p=d�0 and the
second expression is �i(�0). Thus,

V

"
d ln p

d�0

#
= i(�0).

Now we use the Central Limit Theorem for

p
n

 
1

n

P d ln p

d�0

!
with E

"
d ln p

d�0

#
= 0;

V

"
d ln p

d�0

#
= i(�0)
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Asymptotic Normality of Consistent Estimators 5

to obtain
p
n(�� � �0)i(�0)! N(0; i(�0)):

Thus (using z � N(0;P)) Az � N(0; APA0))
p
n(�� � �0)! N(0; i(�0)

�1)

Basic result: Approximate the distribution of

(�� � �0) by N
 
0;
i(�0)

�1

n

!
:

Of course, i(�0)�1 is consistently estimated by i(��)�1

under our assumptions. (Why?)
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Applications

1. This will give the exact distribution in estmating a
normal mean. Check this.

2. Consider a regression model withEy = X�, V y =
�2I and y � normal. Check that the asymptotic distri-
bution of �̂ is equal to its exact distribution.
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Miscellaneous Useful Results

Consistency of continuous functions of ML estimators:

Suppose �̂ is the ML estimator.

Recall that plim �̂ = �0 ) plim g(�̂) = g(�0).

(Choice of parametrization is irrelevant in this regard.)

Note: Do not use the ambiguous term �asymptotically
unbiased� estimators.
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Why do we use ML estimators?

Under our assumptions which provide lots of smoothness,
ML estimators are asymptotically e¢ cient - attaining (as-
ymptotically) the Cramer-Rao lower bound on variance.
(What is the relation to the Gauss-Markov property?)

Proposition: (Cramer-Rao bound for unbiased estima-
tors.) Let p be the density function.

Suppose �� is an unbiased estimator of �0. Then

V (��) �
"
V

 
d ln p

d�0

!#�1
= i(�0)

�1:
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Cramer-Rao Bound

Proof : Note that

E(��) = �0 =
Z
��pdx

from unbiasedness. Note that �� is a function of x but
not �0.

Di¤erentiating the above equality with respect to �0, we
get

1 =
Z
��p0dx =

Z
��
 
p0

p

!
pdx

= E

"
��
 
p0

p

!#
= E

"
��
d ln p

d�0

#

= cov

"
��;

d ln p

d�0

#
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The Cauchy-Schwartz inequality implies that

[cov(X;Y )]2 < V (X)V (Y ).

Thus"
cov

"
��;

d ln p

d�0

##2
= 1 � V (��)V

 
d ln p

d�0

!

) V (��) �
"
V

 
d ln p

d�0

!#
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Note:

E

 
d2 ln p

d�2

!
= �E

"�
d ln p

d�

�2#
= �V

�
d ln p

d�

�

Since

d2 ln p

d�2
=

d

d�

 
p0

p

!
=
pp00 � (p0)2

p2
=
p00

p
�
 
p0

p

!2

) E

 
d2 ln p

d�2

!
= �E

"�
d ln p

d�

�2#

(why?)

Thus we have an expression for the variance of the �rst
derivative on ln p in term of the second derivative - a
property we have seen before.
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Linear Model:

The assumption of ��xed in repeated samples� is rarely
useful in economics. The basic assumption is that the
distribution of X satis�es

p lim

"
X 0X
n

#
= Q

where Q is positive de�nite, and does not depend on
parameters.

Our density of observables is p(y; x); usually, we assume
that this is p(yjx)p(x) and focus on the �rst factor.
(Why is this restrictive?)
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Then the ML estimator depends on the conditional dis-
tribution.

It is useful to go through the asymptotics applied to the
linear model.

Recall that �̂ = �+(X 0X)�1X" = �+[X 0X=n]�1[X=n]".

If p lim [X 0X=n] = Q and p lim[X 0�=n] = 0, then
p lim �̂ = � (i.e., �̂ is a consistent estimator of �). Re-
call that if also

n1=2[X 0"=n] D! N(0; �2Q), then

n1=2[�̂ � �] D! N(0; �2Q�1):
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