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Economics 620, Lecture 8: Asymptotics I

We are interested in the properties of estimators as

n!1:

Consider a sequence of random variables

fXn; n � 1g:

Often Xn is an estimator such as a sample mean or c�n
Often it is convenient to center the sequence: fc�n��g
and sometimes to scale f(c�n � �)=�ng
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Plim

De�nition: (convergence in probability)

A sequence of random variables fXn; n � 1g is said to
converge weakly to a constant c if

lim
n!1P (jXn � cj > ") = 0

for every given " > 0.

This is written p limXn = c or Xn
p! c

Some properties of plim:

1. plim XY = plim X plim Y

2. plim (X + Y ) = plim X + plim Y

3. Slutsky�s theorem: If the function g is continuous
at plim X, then plim g(X) = g(plim X).
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A.S. convergence

De�nition: (Strong convergence)

A sequence of random variables is said to converge strongly
to a constant c if

P ( lim
n!1Xn = c) = 1

or

lim
N!1

P ( sup
n>N

jxn � cj > ") = 0:

Strong convergence is also called almost sure convergence
or convergence with probability one and is written Xn !
c w.p. 1 or Xn

a:s:! c.
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Di¤erence betwen convergence a:s. and plim

plim involves probabilities on each element of the se-
quence, and limits of these probabilities.

limn!1 P (jXn � cj > ") = 0

Strong convergence involves probabilities on the entire
sequence.

P (limn!1Xn = c) = 1

Sequence of marginal probabilities vs. joint probability
over in�nite sequences.

Note a.s. convergence implies plim.

Di¤erence usually doesn�t matter in applications and plim
is easier to establish.
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Laws of Large Numbers:

Let fXn; n � 1g be observations and suppose we look
at the sequence

�Xn =
Pn
i=1Xi=n

when does �Xn
p! � where � is some parameter?

Weak Law of Large Numbers: (WLLN) Let E(Xi) = �,
V (Xi) = �

2, cov(XiXj) = 0.

Then �Xn � �! 0 in probability.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.



6

Proof of WLLN

Lemma: Chebyshev�s Inequality :

P (jX � �j � k) � �2=k2 where E(X) = � and
V (X) = �2.

Proof of Chebshev�s inequality

�2 =
Z
(x� �)2dF

=
��kR
�1

(x� �)2dF +
�+kR
��k

(x� �)2dF

+
1R
�+k

(x� �)2dF
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Proof of WLLN (cont�d)

Put in the largest value of x in the �rst and smallest in
the last integral, and drop the middle to get:

�2 � k2P (jx� �j � k)

Proof of WLLN: Since we are interested inXn, note that

E(Xn) = � and V (Xn) = �2=n.

Consequently,

limn!1 P (j �Xn � �j > ") 5 limn!1 �2=n"2 = 0.
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Notes:

1. E(Xi) = �i is okay. Consider

�Xn � ��n with ��n = n�1
P
�i:

2. V (Xi) = �
2
i is okay. As long as lim

P
�2i =n

2 =

0, our proof applies.

3. Existence of �2 can be dropped if we assume in-
dependent and identically distributed observations.

In this case, the proof is di¤erent and is based on Markov�s
inequality

P (jXj � k) � EjXj=k

from which Chebyshev�s inequality follows.
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Strong Law of Large Numbers:

If Xi are independent with E(Xi) = �i, V (Xi) = �
2
i

and
P
�2i =i

2 <1. Then �Xn � ��n ! 0 almost surely
(a.s.).

We can drop the existence of �2i if we assume indepen-
dent and identically distributed observations.

Example (Shiryayev): let the probability space be [0,1)
with Lebesgue measure (length of intervals). To each el-
ement ! of [0,1), there is a sequence fxigwhere xiis the
ith element in the dyadic expansion of !;i.e. !=0:x1x2:::; xi 2
f0; 1g: Then P (X1 = x1; :::; Xn = xn) = P (x1=2 +

x2=2
2 + :::xn=2n � ! < x1=2 + x2=2

2 + :::xn=2n +

1=2n) = 1=2n:Thus P (X = 1) = P (X = 0) = 1=2

and the obs are iid. By the SLLN,
P
Xi=n! 1=2:

Interpretation? Borel result on normal numbers.
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Weak Convergence in Distribution

De�nition: (Convergence in distribution):

A sequence of random variables fXn; n � 1g with distri-
bution functions fFn(x) = P (Xn � x); n � 1g is said
to converge in distribution to a random variable X with
distribution function F (x) if and only if limn!1 Fn(x) =
F (x) at all points of continuity of F (x).

Notation: Xn
D! X.

plim is a special case in which F is a degenerate distrib-
ution.
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More on Convergence in Distribution

An equivalent characterization is:

Ef(Xn)! Ef(X)

for all bounded continuous functions f.Another is

P (Xn 2 B)! P (X 2 B)

for all sets B with P (@B) = 0:

We have Xn
as!) Xn

p!) Xn
d!
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Continuous Mapping Theorem

Convergence in distribution is used to approximate the
distribution of estimators.

If an estimator is consistent (plim=true value), studying
the limiting distribution nontrivially requires norming.

CMT: Let g(x) be continuous on a set which has prob-
ability one. Then

Xn
d! X ) g(Xn)

d! g(X)

Xn
p! X ) g(Xn)

p! g(X)

Xn
as! X ) g(Xn)

as! g(X)

The CMT is extremely useful. Why?
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Some properties of convergence in probability
(plim) and convergence in distribution:

1. Xn and Yn are random variable sequences. If
plim(Xn � Yn) = 0 and Yn

D! Y , then Xn
D! Y as

well. This is an extremely useful device.

2. If Yn
D! Y and Xn ! c in probability (i.e.,

plimXn = c), then

a. Xn + Yn
D! c+ Y

b. XnYn
D! cY

c. Yn=Xn
D! Y=c, c 6= 0.
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"Big O and little o"

This notation is used to denote relative orders of magni-
tude of sequences in the limit.

Sequences fxig; fbig (nonstochastic, for now)

xn = O(bn)) lim
n!1xn=bn = �1 < c <1

xn = o(bn)) lim
n!1xn=bn = 0

Thus

xn = o(1)) xn ! 0;xn = o(n)) xn=n! 0

xn = O(1)) xn ! c;xn = O(n)) xn=n! c
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Stochastic Versions

For stochastic sequences fXig we have

Xn = Op(bn)) 8�9C such that
lim
n!1P (jXn=bnj < C) > 1� �

This says that the ratio remains bounded in probability.
Also

Xn = op(bn)) p limXn=bn = 0

Thus for example (using results above) if

Xn � Yn = op(1) and Xn d! X

Then Yn
d! X
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Further Properties of Op and op

op(1) + op(1) = op(1)

op(1) +Op(1) = Op(1)

Op(1)op(1) = op(1)

(1 + op(1))�1 = Op(1)

op(bn) = bnop(1)

Op(bn) = bnOp(1)
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