Economics 620, Lecture 8: Asymptotics I

We are interested in the properties of estimators as

$$
n \rightarrow \infty
$$

Consider a sequence of random variables

$$
\left\{X_{n}, n \geq 1\right\}
$$

Often X_{n} is an estimator such as a sample mean or $\widehat{\beta_{n}}$

Often it is convenient to center the sequence: $\left\{\widehat{\beta_{n}}-\beta\right\}$
and sometimes to scale $\left\{\left(\widehat{\beta_{n}}-\beta\right) / \sigma_{n}\right\}$

Plim

Definition: (convergence in probability)

A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is said to converge weakly to a constant c if

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-c\right|>\varepsilon\right)=0
$$

for every given $\varepsilon>0$.
This is written $p \lim X_{n}=c$ or $X_{n} \xrightarrow{p} c$

Some properties of plim:

1. plim $X Y=$ plim X plim Y
2. \quad plim $(X+Y)=\operatorname{plim} X+\operatorname{plim} Y$
3. Slutsky's theorem: If the function g is continuous at plim X, then plim $g(X)=g(\operatorname{plim} X)$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

A.S. convergence

Definition: (Strong convergence)

A sequence of random variables is said to converge strongly to a constant c if

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=c\right)=1
$$

or

$$
\lim _{N \rightarrow \infty} P\left(\sup _{n>N}\left|x_{n}-c\right|>\varepsilon\right)=0
$$

Strong convergence is also called almost sure convergence or convergence with probability one and is written $X_{n} \rightarrow$ c w.p. 1 or $X_{n} \xrightarrow{\text { a.s. }} c$.

Difference betwen convergence a.s. and plim
plim involves probabilities on each element of the sequence, and limits of these probabilities.

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-c\right|>\varepsilon\right)=0
$$

Strong convergence involves probabilities on the entire sequence.

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=c\right)=1
$$

Sequence of marginal probabilities vs. joint probability over infinite sequences.

Note a.s. convergence implies plim.

Difference usually doesn't matter in applications and plim is easier to establish.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Laws of Large Numbers:

Let $\left\{X_{n}, n \geq 1\right\}$ be observations and suppose we look at the sequence

$$
\bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n
$$

when does $\bar{X}_{n} \xrightarrow{p} \xi$ where ξ is some parameter?

Weak Law of Large Numbers: (WLLN) Let $E\left(X_{i}\right)=\mu$, $V\left(X_{i}\right)=\sigma^{2}, \operatorname{cov}\left(X_{i} X_{j}\right)=0$.

Then $\bar{X}_{n}-\mu \rightarrow 0$ in probability.

Proof of WLLN

Lemma: Chebyshev's Inequality:
$P(|X-\mu| \geq k) \leq \sigma^{2} / k^{2}$ where $E(X)=\mu$ and $V(X)=\sigma^{2}$.

Proof of Chebshev's inequality

$$
\begin{gathered}
\sigma^{2}=\int(x-\mu)^{2} d F \\
=\int_{-\infty}^{\mu-k}(x-\mu)^{2} d F+\int_{\mu-k}^{\mu+k}(x-\mu)^{2} d F \\
+\int_{\mu+k}^{\infty}(x-\mu)^{2} d F
\end{gathered}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Proof of WLLN (cont'd)

Put in the largest value of x in the first and smallest in the last integral, and drop the middle to get:

$$
\sigma^{2} \geq k^{2} P(|x-\mu| \geq k)
$$

Proof of WLLN: Since we are interested in $\overline{X_{n}}$, note that

$$
E\left(\overline{X_{n}}\right)=\mu \text { and } V\left(\overline{X_{n}}\right)=\sigma^{2} / n .
$$

Consequently,
$\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right) \leqq \lim _{n \rightarrow \infty} \sigma^{2} / n \varepsilon^{2}=0$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Notes:

1.

$$
\begin{aligned}
& E\left(X_{i}\right)=\mu_{i} \text { is okay. Consider } \\
& \qquad \bar{X}_{n}-\bar{\mu}_{n} \text { with } \bar{\mu}_{n}=n^{-1} \sum \mu_{i} .
\end{aligned}
$$

2. $V\left(X_{i}\right)=\sigma_{i}^{2}$ is okay. As long as $\lim \sum \sigma_{i}^{2} / n^{2}=$ 0 , our proof applies.
3. Existence of σ^{2} can be dropped if we assume independent and identically distributed observations.

In this case, the proof is different and is based on Markov's inequality

$$
P(|X| \geq k) \leq E|X| / k
$$

from which Chebyshev's inequality follows.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Strong Law of Large Numbers:

If X_{i} are independent with $E\left(X_{i}\right)=\mu_{i}, V\left(X_{i}\right)=\sigma_{i}^{2}$ and $\sum \sigma_{i}^{2} / i^{2}<\infty$. Then $\bar{X}_{n}-\bar{\mu}_{n} \rightarrow 0$ almost surely (a.s.).

We can drop the existence of σ_{i}^{2} if we assume independent and identically distributed observations.

Example (Shiryayev): let the probability space be [0,1) with Lebesgue measure (length of intervals). To each element ω of $\left[0,1\right.$), there is a sequence $\left\{x_{i}\right\}$ where x_{i} is the ith element in the dyadic expansion of ω,i.e. $\omega=0 . x_{1} x_{2} \ldots, x_{i} \in$ $\{0,1\}$. Then $P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(x_{1} / 2+\right.$ $x_{2} / 2^{2}+\ldots x_{n} / 2^{n} \leq \omega<x_{1} / 2+x_{2} / 2^{2}+\ldots x_{n} / 2^{n}+$ $\left.1 / 2^{n}\right)=1 / 2^{n}$. Thus $P(X=1)=P(X=0)=1 / 2$ and the obs are iid. By the SLLN, $\sum X_{i} / n \rightarrow 1 / 2$.

Interpretation? Borel result on normal numbers.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Weak Convergence in Distribution

Definition: (Convergence in distribution):

A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ with distribution functions $\left\{F_{n}(x)=P\left(X_{n} \leq x\right), n \geq 1\right\}$ is said to converge in distribution to a random variable X with distribution function $F(x)$ if and only if $\lim _{n \rightarrow \infty} F_{n}(x)=$ $F(x)$ at all points of continuity of $F(x)$.

Notation: $X_{n} \xrightarrow{D} X$.
plim is a special case in which F is a degenerate distribution.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

More on Convergence in Distribution

An equivalent characterization is:

$$
E f\left(X_{n}\right) \rightarrow E f(X)
$$

for all bounded continuous functions f.Another is

$$
P\left(X_{n} \in B\right) \rightarrow P(X \in B)
$$

for all sets B with $P(\partial B)=0$.

We have $X_{n} \xrightarrow{a s} \Rightarrow X_{n} \xrightarrow{p} \Rightarrow X_{n} \xrightarrow{d}$

Continuous Mapping Theorem

Convergence in distribution is used to approximate the distribution of estimators.

If an estimator is consistent (plim=true value), studying the limiting distribution nontrivially requires norming.

CMT: Let $g(x)$ be continuous on a set which has probability one. Then

$$
\begin{aligned}
& X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(X) \\
& X_{n} \xrightarrow{p} X \Rightarrow g\left(X_{n}\right) \xrightarrow{p} g(X) \\
& X_{n} \xrightarrow{a s} X \Rightarrow g\left(X_{n}\right) \xrightarrow{a s} g(X)
\end{aligned}
$$

The CMT is extremely useful. Why?

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Some properties of convergence in probability (plim) and convergence in distribution:

1. $\quad X_{n}$ and Y_{n} are random variable sequences. If $\operatorname{plim}\left(X_{n}-Y_{n}\right)=0$ and $Y_{n} \xrightarrow{D} Y$, then $X_{n} \xrightarrow{D} Y$ as well. This is an extremely useful device.
2. If $Y_{n} \xrightarrow{D} Y$ and $X_{n} \rightarrow c$ in probability (i.e., $\operatorname{plim} X_{n}=c$), then
a. $\quad X_{n}+Y_{n} \xrightarrow{D} c+Y$
b. $\quad X_{n} Y_{n} \xrightarrow{D} c Y$
c. $\quad Y_{n} / X_{n} \xrightarrow{D} Y / c, c \neq 0$.

"Big O and little o"

This notation is used to denote relative orders of magnitude of sequences in the limit.

Sequences $\left\{x_{i}\right\},\left\{b_{i}\right\}$ (nonstochastic, for now)

$$
\begin{gathered}
x_{n}=O\left(b_{n}\right) \Rightarrow \lim _{n \rightarrow \infty} x_{n} / b_{n}=-\infty<c<\infty \\
x_{n}=o\left(b_{n}\right) \Rightarrow \lim _{n \rightarrow \infty} x_{n} / b_{n}=0
\end{gathered}
$$

Thus

$$
\begin{aligned}
& x_{n}=o(1) \Rightarrow x_{n} \rightarrow 0 ; x_{n}=o(n) \Rightarrow x_{n} / n \rightarrow 0 \\
& x_{n}=O(1) \Rightarrow x_{n} \rightarrow c ; x_{n}=O(n) \Rightarrow x_{n} / n \rightarrow c
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Stochastic Versions

For stochastic sequences $\left\{X_{i}\right\}$ we have

$$
\begin{gathered}
X_{n}=O_{p}\left(b_{n}\right) \Rightarrow \forall \epsilon \exists C \text { such that } \\
\lim _{n \rightarrow \infty} P\left(\left|X_{n} / b_{n}\right|<C\right)>1-\epsilon
\end{gathered}
$$

This says that the ratio remains bounded in probability. Also

$$
X_{n}=o_{p}\left(b_{n}\right) \Rightarrow p \lim X_{n} / b_{n}=0
$$

Thus for example (using results above) if

$$
X_{n}-Y_{n}=o_{p}(1) \text { and } X_{n} \xrightarrow{d} X
$$

Then $Y_{n} \xrightarrow{d} X$
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

Further Properties of O_{p} and o_{p}

$$
\begin{gathered}
o_{p}(1)+o_{p}(1)=o_{p}(1) \\
o_{p}(1)+O_{p}(1)=O_{p}(1) \\
O_{p}(1) o_{p}(1)=o_{p}(1) \\
\left(1+o_{p}(1)\right)^{-1}=O_{p}(1) \\
o_{p}\left(b_{n}\right)=b_{n} o_{p}(1) \\
O_{p}\left(b_{n}\right)=b_{n} O_{p}(1)
\end{gathered}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 8. Copyright (c) N. M. Kiefer.

