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Economics 620, Lecture 8a: Asymptotics II

Uses of Asymptotic Distributions:

Suppose �Xn��! 0 in probability. (What can be said
about the distribution of �Xn � �?)

In order to get distribution theory, we need to norm the
random variable; we usually look at n1=2( �Xn � �).

Note that the random variable sequence fn1=2 �Xn� �),
n � 1g does not converge in probability. (Why not?).

We might be able to make probability statements like

limn!1 P (n1=2( �Xn � �) < z) = F (z)

for some distribution F .

Then we could use F as an approximate distribution for
n1=2( �Xn��). This implies an approximate distribution
for �Xn.

It is often easier to work with Yn = n1=2( �Xn � �)=�.
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Moment Generating Function

De�nition: The moment generating function for the rv
X (or the distribution f) is

mX(t) = E(e
tX) =

Z 1
�1

etxf(x)dx:

The name comes from the fact that

drm

dtr
=
Z 1
�1

xretxf(x)dx = E(Xr)

when evaluated at t = 0

The subscript is dropped when unnecessary.
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Moment Generating Function (cont�d):

Note the series expansion:

m(t) = E(etX) = E(1�Xt+ 1

2!
(Xt)2 + :::)

= 1 + �1t+
1

2
�2t

2 + :::

where �r = EXr

(For example: �1 = �; �2 = �2 + �2):

Property 1 : The moment generating function of
nP
i=1

Xi

when Xi are independent is the product of the moment
generating functions of Xi. (Exercise: Prove this.)

Property 2 : Let X and Y be random variables with
continuous densities f(x) and g(y). If the moment gen-
erating function of X is equal to that of Y in an interval
�h < t < h, then f = g.
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Moment Generating Function (cont�d)

Example: The moment generating function for X �
N(0; 1) is

m(t) = E(etx) =
1p
2�

Z 1
�1

etxe�
1
2x
2
dx

= et
2=2

 
1p
2�

! Z 1
�1

e�
1
2(x�t)

2
dx =?
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Characteristic Function

The mgf does not always exist. The function �X(t) =
EeitX always exists and is continuous and bounded.

We know Xn
d! X ) �Xn(t)! �X(t):

The converse

�Xn(t)! �X(t) (8t)) Xn
d! X

is also true

If EjXj <1 then �0(0) = iEX:

Similarly, if EX2 <1 then �00(0) = �EX2, etc.

CFs combine like mgfs.
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Properties of c.f.s

�X(t) = Ee
itX = E cos tX + iE sin tX

Thus �(0) = 1; j�(t)j � 1;and �(t) = �(�t):

where the bar indicates complex conjugate.

If X is symmetrically distributed, � is real-valued.

Some cfs: Degenerate at �; �(t) = eit�

Binomial(n,p), �(t) = (peit + 1� p)n

N(�; �2); �(t) = eit���
2t2=2
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Using �: Application 1, WLLN

Suppose fXig are iid each with cf �(t)

Then,

EeitX = �n(t=n) = (1 + it�=n+ o(1=n))n

! eit�

The cf of the constant �.

Application 2 will give a central limit theorem.
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Using �: Application 2, CLT

Central Limit Theorem: (CLT ) (Lindberg-Levy) The
distribution of Yn = n1=2( �Xn � �)=� as n!1 is

�(z) =
1p
2�

Z z
�1

e�x
2=2dx

(standard normal)

Proof : Let �Xi��(t) be the characteristic function of
(Xi � �). That is

�Xi��(t) = 1�
�2t2

2
+ o(t2)

where o(t2) is the remainder term such that o(t2)=t2 !
0 as t! 0:
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CLT

We know that

Yn =

p
n( �Xn � �)

�
=

Pn
i=1(Xi � �)
�
p
n

;

Hence

�Yn(t) =

"
�Xi��

 
t

�
p
n

!#n

=

"
1� t2

2n
+ o

 
t2

n

!#n

) ln�Yn(t) = n ln

"
1� t2

2n
+ o

�
1

n

�#

� n ln

"
1� t2

2n

#
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CLT

ln�Yn(t) � n ln
�
1� t2

2n

�

) �Yn(t)! e�t
2=2

as n!1 (using ln(1 + x) � x for small x)

which is the cf of a standard normal random variable.

Point of the Central Limit Theorem: The distribution
function of �Xn for large n can be approximated by that
of a normal with mean � and variance �2=n.
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Notes:

1. Identical means and variances can be dropped straight-
forwardly. We need some restrictions on the variance
sequence though. In this case, we work with

Yn =

Pn
i=1(Xi � �i)�Pn
i=1 �

2
i

�1=2 :

2. Versions of the Central Limit Theorem with ran-
dom vectors are also available. Just apply univariate the-
orems to all linear combinations.

3. The basic requirement is that each term in the sum
should make a negligible contribution.
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Examples:

1. Estimation of mean � from a sample of normal
random variables: In this case, we estimate � by �X, and
the asymptotic approximation for the distribution of �X
or ( �X � �) is exact.

2. Consider n1=2(�̂��) where �̂ is the LS estimator.

n1=2(�̂ � �) = n1=2(X 0X)�1X 0"

= [X 0X=n]�1n1=2[X 0"=n]

Where [X 0X=n] is the sample second moment matrix of
the regressors.

[X 0X=n] is O(1) or maybe Op(1)depending on assump-
tions.

Its lim or plim is Q, a KxK p.d. matrix.
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Regression Example Cont�d

What about n1=2[X 0"=n] =
p
n(1=n)

P
x0i�i?

This is
p
n times a sample mean of x0i�i:These have

Ex0i�i = 0; V x
0
i�i = �

2Q (discuss)

Under the assumption that regressors are well-behaved
(i.e., contribution of any particular observation to [X 0"=n]
is negligible), we can apply a Central Limit Theorem and
conclude that

n1=2(�̂��) = [X 0X=n]�1n1=2[X 0"=n] D! N(0; �2Q�1).

Consistent with previous results?
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The Delta Method

The delta method is a "trick" for approximating the limit-
ing distribution of a function of a statistic whose limiting
distribution is known. From the CMT we know that
Xn

d! X ) g(Xn)
d! g(X):

Suppose Xn =
p
n(Xn � �):What can we say aboutp

n(g(Xn)� g(�))?

Expand

g(Xn) � g(�) + g0(�)(Xn � �)

So
p
n(g(Xn)� g(�)) � g0(�)

p
n(Xn � �)

Hence if
p
n(Xn � �)! N(0; �2)

Then
p
n(g(Xn)� g(�))! N(0; g0(�)2�2)
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Multivariate CLT and Delta

Suppose fXig are K-variate rv�s , EX = �; V X = �

Then we consider Y = t0X� t0�; univariate with EY =

0; V Y = t0�t and apply our CLT to conclude

p
n(Xn � �)! N(0;�)

For the Delta method, suppose g : RK ! Rm and
suppose

p
n(Xn � �)! N(0;�)

Write g(Xn) � g(�) + g0(�)(Xn � �) where g0(�) is
the mxk matrix of derivatives and conclude

p
n(g(Xn)� g(�))! N(0; g0(�)�(g0(�))T )
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