Economics 620, Lecture 7:

Still More, But Last, On the K-Variable Linear Model

Specification Error:

Suppose the model generating the data is

$$
y=X \beta+\varepsilon
$$

However, the model fitted is $y=X^{*} \beta^{*}+\varepsilon$, with the LS estimator

$$
\begin{aligned}
& b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y \\
& =\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta+\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} \varepsilon .
\end{aligned}
$$

Then $E b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta$ and $V\left(b^{*}\right)=\sigma^{2}\left(X^{* \prime} X^{*}\right)^{-1}$

Application 1: Excluded variables

Let $X=\left[X_{1} X_{2}\right]$ and $X^{*}=X_{1}$.
That is, the model that generates the data is

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon .
$$

Consider b^{*} as an estimator of β_{1}.

Proposition: b^{*} is biased.
Proof:

$$
\begin{aligned}
b^{*} & =\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y \\
& =\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =\beta_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \varepsilon \\
E b^{*} & =\beta_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}
\end{aligned}
$$

The second expression on the right hand side is the bias.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

A classic example:

Suppose that the model generating the data is
$y_{i}=\beta_{0}+\beta_{1} S_{i}+a_{i}+\varepsilon_{i}$
y : natural logarithm of earnings
S : schooling
a : ability
a is unobserved and omitted, but it is positively correlated with S.

Then

$$
E b^{*}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{cc}
N & \sum S \\
\sum S & \sum S^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum a \\
\sum a S
\end{array}\right]
$$

supposing a is measured so that its coefficient is 1 .

If we suppose that $\sum a=0$, then the bias in the coefficient of schooling is positive.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

A classic example (cont'd)

Generally, we cannot sign the bias, it depends not only on β_{2} but also on $\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}$, which of course can be positive or negative.

Note that $V b^{*}=\sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}$. So if $\beta_{2}=0$, there is an efficiency gain from imposing the restriction and leaving out X_{2}. This confirms our earlier results.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Estimation of σ^{2} :

$$
\begin{aligned}
& e^{*}=M_{1} y=M_{1}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =M_{1} X_{2} \beta_{2}+M_{1} \epsilon \\
& \Rightarrow e^{* \prime} e^{*}=\beta_{2}^{\prime} X_{2}^{\prime} M_{1} X_{2} \beta_{2}+\varepsilon^{\prime} M_{1} \varepsilon+2 \beta_{2}^{\prime} X_{2}^{\prime} M_{1} \epsilon
\end{aligned}
$$

Note the expected value of the last term is 0 .

Clearly, we cannot estimate σ^{2} by usual methods even if $X_{1}^{\prime} X_{2}=0$ (no bias) since still $M_{1} X_{2} \neq 0$.

There is hope of detecting misspecification from the residuals since $E e^{*} e^{* \prime}=\sigma^{2} M_{1}$ under correct specification and $E e^{*} e^{* \prime}=\sigma^{2} M_{1}+M_{1} X_{2} \beta_{2} \beta_{2}^{\prime} X_{2}^{\prime} M_{1}$ under misspecification.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Application 2:

Inclusion of unnecessary variables.

Let $X=X_{1}$ and $X^{*}=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]$
X_{1} is $N \times K_{1}$ and X_{2} is $N \times K_{2}$.

That is, the "true" model is $y=X_{1} \beta+\varepsilon$.

Proposition: b^{*} is unbiased.

Proof: $E b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta$

$$
=\left[\begin{array}{ll}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2} \\
X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
X_{1}^{\prime} X_{1} \\
X_{2}^{\prime} X_{1}
\end{array}\right] \beta
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

The partitioned inversion formula gives

$$
\left[\begin{array}{cc}
\Gamma & -\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} D \\
-D X_{2}^{\prime} X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} & D
\end{array}\right]
$$

for $\left(X^{* \prime} X^{*}\right)^{-1}$ where $D=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1}$ and
$\Gamma=\left(X_{1}^{\prime} X_{1}\right)^{-1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} D X_{2}^{\prime} X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1}$.

This is a symmetric matrix. Multiplying this out verifies that

$$
E b^{*}=\left[\begin{array}{l}
\beta \\
0
\end{array}\right]
$$

Note that the variance of b^{*} is

$$
V\left(b^{*}\right)=\sigma^{2}\left(X^{* \prime} X^{*}\right)^{-1}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Proposition: The variance of the coefficients of X_{1} in the unrestricted (where the matrix of explanatory variables is X^{*}) is greater than the variance of the coefficients in the restricted model (where the matrix of explanatory variables is X_{1}).

Proof: Using partitioned inversion, the variance of the first K_{1} elements (coefficients on X_{1}) is $\sigma^{2}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} \geq$ $\sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}=$ variance of the restricted estimator. (why?)

Estimation of σ^{2} :
$e^{*}=M^{*} y=M^{*} \varepsilon$

Under normality,
$\left(e^{* \prime} e^{*} / \sigma^{2}\right)=\left(\varepsilon^{\prime} M^{*} \varepsilon / \sigma^{2}\right) \sim \chi^{2}\left(N-K_{1}-K_{2}\right)$
$\Rightarrow s^{2}$ has higher variance than in the restricted model. (why?)
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Note on the interpretation of bias:

$E y=X \beta$ defines β and $L S$ gives unbiased estimates of that β. Questions of bias really require a model.

Further statistical assumptions like

$$
V y=\sigma^{2} I
$$

allow some sorting out of specifications, but is this assumption really attractive?

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Cross products matrix:

In $L S$, "everything" comes from the cross products matrix.

Definition: The cross products matrix is

$$
\left[\begin{array}{cc}
y^{\prime} y & y^{\prime} X \\
X^{\prime} y & X^{\prime} X
\end{array}\right]=\left[\begin{array}{cccc}
\sum y_{i}^{2} \sum y_{i} \sum y_{i} x_{2 i} & \cdots \sum y_{i} x_{K i} \\
\bullet & \sum 1 & \sum x_{2 i} \cdots \sum x_{K i} \\
\bullet & \bullet & & \sum x_{2 i}^{2} \cdots \sum x_{2 i} x_{K i} \\
\bullet & \bullet & \bullet & \cdots \sum x_{K i}^{2}
\end{array}\right]
$$

with a column of ones in X.

It is a symmetric matrix.

Note that x_{j} refers to the j th column of X.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Heteroskedasticity

$V(Y)=V \neq \sigma^{2} I$
Is the $L S$ estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity, $V(\widehat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} V X\left(X^{\prime} X\right)^{-1}$.

Proof:
$V(\hat{\beta})=E\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1}$
$=\left(X^{\prime} X\right)^{-1} X^{\prime} V X\left(X^{\prime} X\right)^{-1}$.
Suppose $\sum=V(\varepsilon)$ is a diagonal matrix. Then

$$
X^{\prime} \sum X=E \sum X_{i} \varepsilon_{i}^{2} X_{i}^{\prime}
$$

Note that the cross products have expectation 0 .
This suggests using $\sum X_{i} e_{i}^{2} X_{i}^{\prime}$.
So we can estimate standard errors under the assumption that $V(y)$ is diagonal.
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that σ_{i}^{2} varies with x_{i}. Then reorder the observations in the order of x_{i}. Suppose N is even. If ε was observed, then

$$
\frac{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{N / 2}^{2}}{\varepsilon_{[(n / 2)+1]}^{2}+\varepsilon_{[(N / 2)+2]}^{2}+\ldots+\varepsilon_{N}^{2}} \sim F(N / 2, N / 2)
$$

could be used.

We are tempted to use e_{i}, but we can't because the first $N / 2 e_{i}$'s are not independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e separately for each half of the sample with K parameters. The statistic is $F((N / 2)-K,(N / 2)-K)$.

It turns out that this "works" better if you delete the middle $N / 3$ observations.
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Testing for heteroskedasticity (cont'd):

2. Breusch-Pagan test:

The disturbances ε_{i} are assumed to be normally and independently distributed with variance $\sigma_{i}^{2}=h\left(z_{i}^{\prime} \alpha\right)$ where h denotes a function, and z_{i}^{\prime} is a $1 \times P$ vector of variables influencing heteroskedasticity.

Let Z be an $N \times P$ matrix with row vectors z_{i}^{\prime}. Some of the variables in Z could be the same as the variables in X.

Regress $e^{2} / \sigma_{M L}^{2}$ on Z, including an intercept term.

Note that (sum of squares due to Z) $/ 2 \sim \chi^{2}(P-1)$ approximately. The factor $1 / 2$ appears here since under normality the variance of $\varepsilon^{2} / \sigma^{2}$ is $2\left(E \varepsilon^{4}=3 \sigma^{4}\right)$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Testing for heteroskedasticity (cont'd):

An alternative approach (Koenker) drops normality and estimates the variance of e_{i}^{2} directly by $N^{-1} \sum\left(e_{i}^{2}-\right.$ $\left.\hat{\sigma}^{2}\right)^{2}$. The resulting statistic can be obtained by regressing e^{2} on z and looking at $N R^{2}$ from this regression.

Other tests are available for time series.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Testing Normality

The moment generating function of a random variable x is $m(t)=E(\exp (t x))$; note $m^{\prime}(0)=E x ; m^{\prime \prime}(0)=$ $E x^{2}$; etc.

The MGF of the normal distribution $n\left(\mu, \sigma^{2}\right)$ is $m(t)=$ $\exp \left(t \mu+t^{2} \sigma^{2} / 2\right)$.

Proof:
let $c=(2 \pi \sigma)^{-1 / 2}$

$$
\begin{aligned}
m(t) & =c \int \exp (t x) \exp \left(-1 / 2(x-\mu)^{2} / \sigma^{2}\right) d x \\
& =c \int \exp \left(-1 / 2\left(x-\mu-\sigma^{2} t\right)^{2} / \sigma^{2}+t \mu+\sigma^{2} t^{2} / 2\right) d x \\
& =\exp \left(t \mu+\sigma^{2} t^{2} / 2\right)
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

Testing Normality (cont'd)

Thus for the regression errors ε we have $E \varepsilon=0 ; E \varepsilon^{2}=\sigma^{2} ; E \varepsilon^{3}=0 ; E \varepsilon^{4}=3 \sigma^{4} ; E \varepsilon^{5}=0$; etc.

It is easier to test the 3rd and 4th moment conditions than normality directly.

If we knew the ε, it would be easy to come up with a χ^{2} test.

In fact a test can be formed using the residuals e instead (and relying on asymptotic distibution theory). The test statistic is

$$
\left.n\left[\overline{\left((e / s)^{3}\right)^{2}} / 6+\overline{\left((e / s)^{4}\right.}-3\right)^{2} / 24\right]
$$

Which is χ^{2} with $2 d f$.

This is the Kiefer/Salmon test (also called Jarque/Bera).

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.

