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Economics 620, Lecture 7:

Still More, But Last, On the K-Variable Linear
Model

Speci�cation Error:

Suppose the model generating the data is

y = X� + "

However, the model �tted is y = X���+ ", with the LS
estimator

b� = (X�0X�)�1X�0y

= (X�0X�)�1X�0X� + (X�0X�)�1X�0".

ThenEb� = (X�0X�)�1X�0X� and V (b�) = �2(X�0X�)�1
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Application 1: Excluded variables

Let X = [X1X2] and X� = X1.

That is, the model that generates the data is

y = X1�1 +X2�2 + ":

Consider b� as an estimator of �1:

Proposition: b� is biased.

Proof :

b� = (X�0X�)�1X�0y

= (X 01X1)
�1X 01(X1�1 +X2�2 + ")

= �1 + (X
0
1X1)

�1X 01X2�2 + (X
0
1X1)

�1X 01"

Eb� = �1 + (X
0
1X1)

�1X 01X2�2

The second expression on the right hand side is the bias.
�
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A classic example:

Suppose that the model generating the data is
yi = �0 + �1Si + ai + "i
y: natural logarithm of earnings
S: schooling
a: ability

a is unobserved and omitted, but it is positively correlated
with S.

Then

Eb� =

"
�0
�1

#
+

"
N

P
SP

S
P
S2

#�1 " P
aP
aS

#
supposing a is measured so that its coe¢ cient is 1.

If we suppose that
P
a = 0, then the bias in the coe¢ -

cient of schooling is positive.
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A classic example (cont�d)

Generally, we cannot sign the bias, it depends not only
on �2 but also on (X

0
1X1)

�1X 01X2, which of course can
be positive or negative.

Note that V b� = �2(X 01X1)
�1. So if �2 = 0, there

is an e¢ ciency gain from imposing the restriction and
leaving out X2. This con�rms our earlier results.
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Estimation of �2:

e� =M1y =M1(X1�1 +X2�2 + ")

=M1X2�2 +M1�

) e�0e� = �02X
0
2M1X2�2 + "

0M1"+ 2�
0
2X

0
2M1�

Note the expected value of the last term is 0.

Clearly, we cannot estimate �2 by usual methods even if
X 01X2 = 0 (no bias) since still M1X2 6= 0.

There is hope of detecting misspeci�cation from the resid-
uals since Ee�e�0 = �2M1 under correct speci�cation
and Ee�e�0 = �2M1 +M1X2�2�

0
2X

0
2M1 under mis-

speci�cation.
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Application 2:

Inclusion of unnecessary variables.

Let X = X1 and X� = [X1 X2]

X1 is N �K1 and X2 is N �K2.

That is, the �true�model is y = X1� + ".

Proposition: b� is unbiased.

Proof : Eb� = (X�0X�)�1X�0X�

=

"
X 01X1 X 01X2
X 02X1 X 02X2

#�1 "
X 01X1
X 02X1

#
�
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The partitioned inversion formula gives

"
� �(X 01X1)�1X 01X2D

�DX 02X1(X 01X1)�1 D

#

for (X�0X�)�1 where D = (X 02M1X2)
�1 and

� = (X 01X1)
�1+(X 01X1)

�1X 01X2DX
0
2X1(X

0
1X1)

�1:

This is a symmetric matrix. Multiplying this out veri�es
that

Eb� =

"
�
0

#
. �

Note that the variance of b� is

V (b�) = �2(X�0X�)�1.
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Proposition: The variance of the coe¢ cients ofX1 in the
unrestricted (where the matrix of explanatory variables is
X�) is greater than the variance of the coe¢ cients in
the restricted model (where the matrix of explanatory
variables is X1).

Proof : Using partitioned inversion, the variance of the
�rstK1 elements (coe¢ cients onX1) is �2(X 01M2X1)

�1 �
�2(X 01X1)

�1 = variance of the restricted estimator. (why?)
�

Estimation of �2:

e� =M�y =M�"

Under normality,

(e�0e�=�2) = ("0M�"=�2) � �2(N �K1 �K2)

) s2 has higher variance than in the restricted model.
(why?)
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Note on the interpretation of bias:

Ey = X� de�nes � and LS gives unbiased estimates of
that �. Questions of bias really require a model.

Further statistical assumptions like

V y = �2I

allow some sorting out of speci�cations, but is this as-
sumption really attractive?

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 7. Copyright (c) N. M. Kiefer.



10

Cross products matrix:

In LS, �everything� comes from the cross products ma-
trix.

De�nition: The cross products matrix is

"
y0y y0X
X 0y X 0X

#
=

266664
P
y2i
P
yi
P
yix2i � � �

P
yixKi

� P
1

P
x2i � � �

P
xKi

� � P
x22i � � �

P
x2ixKi

� � � � � �Px2Ki

377775
with a column of ones in X.

It is a symmetric matrix.

Note that xj refers to the jth column of X.
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Heteroskedasticity

V (Y ) = V 6= �2I

Is the LS estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity,
V (�̂) = (X 0X)�1X 0V X(X 0X)�1:

Proof :

V (�̂) = E(X 0X)�1X 0""0X(X 0X)�1

= (X 0X)�1X 0V X(X 0X)�1. �

Suppose
P
= V (") is a diagonal matrix. Then

X 0
P
X = E

P
Xi"

2
iX

0
i:

Note that the cross products have expectation 0.

This suggests using
P
Xie

2
iX

0
i.

So we can estimate standard errors under the assumption
that V (y) is diagonal.
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Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that �2i varies with xi. Then reorder
the observations in the order of xi. Suppose N is even.
If " was observed, then

"21 + "
2
2 + :::+ "

2
N=2

"2[(n=2)+1] + "
2
[(N=2)+2] + :::+ "

2
N

� F (N=2; N=2)

could be used.

We are tempted to use ei, but we can�t because the �rst
N=2 ei�s are not independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e sep-
arately for each half of the sample with K parameters.
The statistic is F ((N=2)�K; (N=2)�K):

It turns out that this �works� better if you delete the
middle N=3 observations.
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Testing for heteroskedasticity (cont�d):

2. Breusch-Pagan test:

The disturbances "i are assumed to be normally and inde-
pendently distributed with variance �2i = h(z0i�) where
h denotes a function, and z0i is a 1�P vector of variables
in�uencing heteroskedasticity.

Let Z be an N � P matrix with row vectors z0i. Some
of the variables in Z could be the same as the variables
in X.

Regress e2=�2ML on Z, including an intercept term.

Note that (sum of squares due to Z)=2 � �2(P � 1)
approximately. The factor 1=2 appears here since under
normality the variance of "2=�2 is 2(E"4 = 3�4).
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Testing for heteroskedasticity (cont�d):

An alternative approach (Koenker) drops normality and
estimates the variance of e2i directly by N

�1P(e2i �
�̂2)2. The resulting statistic can be obtained by regress-
ing e2 on z and looking at NR2 from this regression.

Other tests are available for time series.
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Testing Normality

The moment generating function of a random variable x
is m(t) = E(exp(tx)); note m0(0) = Ex; m00(0) =
Ex2; etc.

The MGF of the normal distribution n(�; �2) is m(t) =
exp(t�+ t2�2=2):

Proof :

let c = (2��)�1=2

m(t) = c
Z
exp(tx) exp(�1=2(x� �)2=�2)dx

= c
Z
exp(�1=2(x� �� �2t)2=�2 + t�+ �2t2=2)dx

= exp(t�+ �2t2=2):
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Testing Normality (cont�d)

Thus for the regression errors " we have
E" = 0; E"2 = �2; E"3 = 0; E"4 = 3�4;E"5 = 0;
etc.

It is easier to test the 3rd and 4th moment conditions
than normality directly.

If we knew the ", it would be easy to come up with a �2

test.

In fact a test can be formed using the residuals e instead
(and relying on asymptotic distibution theory). The test
statistic is

n[((e=s)3)2=6 + ((e=s)4 � 3)2=24]:

Which is �2 with 2 df:

This is the Kiefer/Salmon test (also called Jarque/Bera).
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