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Economics 620, Lecture 6:

More on the K-Variable Linear Model

Computation and Distribution of Constrained Estimators:

Consider the null hypothesis H0: R� = r, where R is
q � k and r is q � 1.

We suppose there are genuinely q restrictions under H0,
so rank (R) = q.

Let �̂ be the unconstrained estimator,

i.e., �̂ = (X 0X)�1X 0y.

Let b be the constrained estimator satisfying Rb = r.
(Typically, R�̂ 6= r.)

Proposition:

b = �̂ + (X 0X)�1R0[R(X 0X)�1R0]�1(r �R�̂)
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Proof :

Let S(~b) = (y �X~b)0(y �X~b)� 2�(R~b� r).

The constrained estimator b satis�es the �rst order con-
ditions (2�s cancel):
(1) �X 0y +X 0Xb�R0� = 0
(2) Rb� r = 0

Thus b = �̂ + (X 0X)�1R0�

Let�s eliminate �:

Rb = R�̂ +R(X 0X)�1R0�

Since Rb = r,

[R((X 0X)�1R0]�1r = [R(X 0X)�1R0]�1R�̂ + �.

Thus, � = [R(X 0X)�1R0]�1(r �R�̂).

Substitute out � in the de�nition of b:

b = �̂ + (X 0X)�1R0[R(X 0X)�1R0]�1(r �R�̂) �
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Sampling distribution of b

First step is to �nd the mean and variance of b:

Proposition: Eb = �. (Under H0)

Proof :Substitute �̂ in the de�nition of b:

b = � + (X 0X)�1X 0"

+(X 0X)�1R0[R(X 0X)�1R0]�1[r�R��R(X 0X)�1X 0"]

= �+[I�(X 0X)�1R0[R(X 0X)�1R0]�1R](X 0X)�1X 0",

using r = R�.

From this we see that Eb = �. �
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Proposition: V (b) � V (�̂).

Proof : Let A = R(X 0X)�1R0.

Note that:

b� � = [I � (X 0X)�1R0A�1R](X 0X)�1X 0".

V (b) = E(b� �)(b� �)0

= �2[I � (X 0X)�1R0A�1R](X 0X)�1

[I � (X 0X)�1R0A�1R]0,

since E""0 = �2I

= �2[(X 0X)�1 � 2(X 0X)�1R0A�1R(X 0X)�1

+(X 0X)�1R0A�1R(X 0X)�1R0A�1R(X 0X)�1]

Using the de�nition of A, this becomes

V (b) = �2[(X 0X)�1 � (X 0X)�1R0A�1R(X 0X)�1]

� V (�̂) = �2(X 0X)�1 (why?) �
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� What is the relation to the Gauss-Markov theorem?

� Why doesn�t this expression depend on r?

Proposition: Under normality, we have the complete
sampling distribution of b with the mean and the vari-
ance calculated above.

Estimation of �2:

� What is the unbiased estimator under restriction?

� What is the ML estimator?
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F Tests

Let e and e� be the vector of restricted and unrestricted
residuals respectively.

Proposition:

e0e� e�0e� = (r �R�̂)0[R(X 0X)�1R0]�1(r �R�̂)

Proof : e = y �Xb = y �X�̂ �X(b� �̂)

= e� �X(b� �̂)

) e0e = e�0e� + (b� �̂)0X 0X(b� �̂)

) e0e� e�0e� = (r�R�̂)0[R(X 0X)�1R0]�1(r�R�̂)
�
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Example: Consider y = �0+�1x1+�2x2+ " with the
restriction �1+ �2 = 2. If we substitute for �1, we get

y = �0 + (2� �2)x1 + �2x2 + "

y = �0 + 2x1 � �2x1 + �2x2 + "

) y � 2x1 = �0 + �2(x2 � x1) + "

� Regress (y�2x1) on a constant term and (x2�x1),
and get the sum squared residuals from this restricted
regression (e0e).

� Regress y on a constant term, x1 and x2, and get
the sum squared residuals from this unrestricted re-
gression (e�0e�).

� Compare the sums of squared residuals from these
regressions.
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Dummy Variables

Here we de�ne a new variable D equal to 0 or 1 indicating
absence or presence of a characteristic.

This allows the intercept to di¤er.

Example: homeowners/renters, male/female, regulation
applies/regulation doesn�t apply, etc.
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Dummy Variable Trap:

Suppose X2 = 1 if the characteristic is present

= 0 if the characteristic is not present

and X3 = 1 if the characteristic is not present

= 0 if the characteristic is present.

Then X2 +X3 = 1 = X1 if the regression contains the
constant term X1 = 1 2 RN . .... And?
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Interactions between dummies for di¤erent
characteristics:

Suppose X2 is the dummy variable for characteristic 1
and X3 is the dummy variable for characteristic 2. Let
X4 = X2 �X3 (elementwise).

That is, X4 = 1 if both characteristics are present.

= 0 if only one or none of the characteristics
is present.

Then the (marginal) e¤ect of characteristic 1 is �2; e¤ect
of charactersitic 2 is �3; e¤ect of both is �2+ �3+ �4.

This could be set up di¤erently. Although di¤erent set
ups will give di¤erent coe¢ cients, correct interpretation
of these coe¢ cients will give the same estimated e¤ects.
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Interactions with continuous regressors:
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Example

Suppose education is reported in grouped form:

0-8 years; 9-12years; 12+ years

How should we set up the dummy variables?

One temptation is to code

d = 0 if 0-8 years of educaction

= 1 if 9-12 years of eduction

= 2 if 12+ years of education

This is very restrictive and probably unsound.
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A better set up would be to use 2 dummies:

d1 = 1 if 0-8 years of education

= 0 else

d2 = 1 if 9-12 years of education

= 0 else

The �rst set up imposes that the e¤ect of having 12+
years of education is twice the e¤ect of having 9-12 years
of education. In general, class variables with several
classes require many dummies.
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Practical matters:

Often you will run across categorical variables - with no
natural ordering. It is usually appropriate to do a fe-
quency distribution and form dummy variables on that
basis.

For example, suppose the variable is color, and you have
out of a sample of 100; 25 red, 5 yellow, 40 blue, 1 green,
4 purple, etc. (small numbers for the remaining colors).

It is probably appropriate to make a dummy for red, one
for blue, and use �other�as the base.

Plotting residuals, especially for the �base�observations,
will tell you if this fails.
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Multicollinearity

The problem is lack of data information when X 0X is
singular (recall picture) or �nearly� singular.

If some X�s move together, it is di¢ cult to sort their
separate e¤ects on y. More data does help.

Other sources of information are useful. Purely �techni-
cal� remedies for collinearity work by imposing arbitrary
and sometimes hidden �information�. Never use ridge
regression in an economic application.

The problem of multicollinearity in K-variable regression
is equivalent to the problem of small sample size in esti-
mating a mean.
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Micronumerosity

Goldberger gives an example that puts the problem in
perspective.

Consider estimating a normal mean �. The usual esti-
mator is the sample mean with variance �2=N . This is
a regression model, Ey = �1N , V (y) = �

2IN .

When N is small, the sampling variance is large - �mi-
cronumerosity�.

Extreme micronumerosity occurs when N = 0. Of
course, this is just multicolinearity, since X 0X = N in
the regression interpretation, and X 0X singular is N =

0.

Near multicolinearity corresponds to small N .
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Multicollinearity: e¤ect on ŷ??

Example with n = 2 and x1 and x2 collinear. What
happens in the full rank case?
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