Economics 620, Lecture 5:

The K-Variable Linear Model Il

Third assumption (Normality):

Y, q(XB,O'le)
1 1 ,
= py) = (2ra2)/2) P (—ﬁ(y — XB)(y — Xﬁ))

where NN is the sample size.

The log likelihood function is
((B,0°%) =c—5Ino? -5y — XB)(y — XB).

Proposition: The LS estimator 3 is the ML estimator.
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Proposition: The ML estimator for o2 is

U%\/[L = e’e/N.

Proof: To find the ML estimator for 02, we solve the

FOC:

o4 N 1

3 = 53t aW—XB) (y—-XB)=0

= o°=(y—XB)(y— XB)/N

Plugging in the MLE for 8 gives the MLE for o2

Proposition: The distribution of B given a value of 2
is q(B,02(X'X)71).

Proof: Since 3 is a linear combination of jointly normal
variables, it is normal. Il
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Fact: If Aisan N X N idempotent matrix with rank r,
then there exists an N X N matrix C' with

C'C =1 = CC’ (orthogonal)

C'AC = A,
where:
[ 1...0...0 |
1 0...1..0 | | Ir 0
N=| . B [ 0 0 ]
| 0........ 0 |

C' is the matrix whose columns are orthornormal eigen-

vectors of A.
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Lemma: Let z ~ q(0,I5) and A be an N x N idem-
potent matrix with rank r. Then

2/ Az ~ x2(r).
Proof :

Az = 2Z/CC'ACC 'z = 2C"ACZ = Z'NZ, where ' =
2!'C.

But Z is normal with mean zero and variance:
EzZ = EC'22/C = C'(Ez2')C =C'C = 1.

So, z/Az = Z'AZ is the sum of squares of r standard
normal variables, i.e., 2’ Az ~ x?(r). B
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Proposition:

No2
— ML y*(N - K)

(o)

Proof: Note that 04,; = €’e/N = &'Me/N.

No? e'Me
ML _ NX2(N—K),

=
2 52

o

using the previous lemma with z =¢/0. B

Proposition: cov(a%w I B) =0

Proof: Ee(B — B) = EMe((X'X) 1X'e)
= EMee’ X(X'X)1

=o?MX(X'X) =0
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= e and B are independent.

(This depends on normality: zero covariance = indepen-
dence)

— ¢’e and 3 are independent. B

So, we have the complete sampling distribution of B and

2
CMIL

Note on t-testing:

n

We now that Ba_—ﬁ ~ q(0, 1) where a%, is the £t diag-
k

onal element of o?(X'X)~1.

Estimating o2 by s° gives a statistic which is t(N — K),
using the same argument as in simple regression.
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Simultaneous Restrictions

In multiple regression we can test several restrictions si-

multaneously. Why is this useful?

Recall our expenditure system:

a;
> ay

ory = Bo+B1lnm+Grlnp;+e¢

Inz; = In +Inm — Inp;

We are interested in the hypothesis 81 = 1 and B, =
—1. A composite hypothesis like this cannot be tested
with the tools we have developed so far.
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Lemma: Let z ~ q(0,1), and A and B be symmetric
idempotent matrices such that AB = 0.

Thus A and B are projections to orthogonal spaces. Then
a = 2’ Az and b = 2/ Bz are independent.

Proof :

a = 2/ A’Az = sum of squares of Az

b = 2/ B'Bz = sum of squares of Bz.

Note that both Az and Bz are normal with mean zero.
cov(Az,Bz) = EAz2'B' = AE22’B' = AB' =0
We are done. (why?) B

Note: A similar argument shows that 2’ Az and Lz are
independent if AL’ = 0.
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Testing

Definition:  Suppose v ~ x2%(k) and u ~ x?(p) are
independent. Then
v/k

F =
u/p

~ F'(k,p).

Lemma: Let M and M™ be idempotent with M M™* =
M*, e = Me, e* = M*e, € ~ q(0, o).

Then

F = (ee eeile)*//(t::M* r ) ~J F(tTM—tTM*, tTM*)
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Proof: o~ 2trM* times the denominator is x2(trM*)
As for the numerator:
e —efe* =M Me — MY M*e = &/(M — M*)e.

Note that: (M — M*)(M — M*) = M? — M*M —
MM* + M*? = M — M* (idempotent).

So e'le — e*e* = &/(M — M*)e.

Thus, the numerator upon multiplication by o ~2¢r(M —
M™) is distributed as

Xz(tr(M — M™)).

It only remains to show that the numerator and the de-
nominator are independent.

But (M — M*)M* =0, so we are done. B
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Interpretation:

R[M*] C R[M], i.e.

e’e is a restricted sum of squares

e*'e* is an unrestricted sum of squares.

F' looks at the normalized reduction in “fit" caused by
the restriction.

What sort of restrictions meet the conditions of the lemma?

Proposition: Let X be N x H and X™* be N x K where
H < K. (R[X] C R[X™]).

Suppose X = X*A (Ais K x H).
Let M = T-X(X'X)"1X"and M* = - X*(X¥X*)~1Xx*

Then M and M™ are idempotent and M M™* = M*.
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Example 1: Leaving out variables

Consider y = X181 + X585 4+ € where X7 is N x K
and X2 Is IV X KQ.

Hypothesis: 5, = 0, i.e., X5 is not in the model.

Using the notation from the previous proposition, X =
Xl and X* = [X1X2]

X:X*A,A:[é]

Note that: trM = N — Kq, trM* =N — K1 — K>.

(e —ee*)/ K>
ee* /(N — K1 — Kp)

Thus:

e is from the regression of y on X = X7, and
%k

e* is from the regression of y on X* = [X71.X>].

The degrees of freedom in the numerator is the number
of restrictions.
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Example 2: Testing the equality of regression
coefficients in two samples.

Consider
y1 = X181 +¢e1 where y1 is N1 X 1 and X7 is N1 X K,

and
yo = X205+ &2 where yp is Np X 1 and X5 is Ny X K.

Hypothesis: 81 = B»

Combine the observations from the samples:

_ |1 U * X1 0 _ 51
= |n)x-lots e
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The unrestricted model is

y=X"B+e=X181+ X208s +¢.

X:X*A,A:“]

Note that ¢trM* = N7 + Np — 2K and
trM = N1+ N — K.

Run the restricted and unrestricted regressions, and cal-
culate

B (e — e*e*) /K
~ e¥e* /(N1 + Ny — 2K)
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Example 3: Testing the equality of a subset of
coefficients

Consider
y1 = X181 + X282 + €1
where X1 is N1 X K1 and X5 is N1 X K>
and
Yo = X303 + Xufy + €2
where X3 is No X K7 and X4 is Ny X Ky

Hypothesis: (31 = B3

The unrestricted regression is

8,
Y1 X1 X 0 O Bo
p— p— _|_
Y [w] [0 0 X3 X4] B3 )
| B4
= X*B+e.
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With the restriction, we have

[Xl X5 o] b1

Y X3 0 X4 /82 + €
| 53
= XB—|—5.
X = X*A A=

O ~NO N
© O ~O
~N O O O

Thus,

the test statistics is:
(e'e — e*e*) /K1
e¥'e* /(N1 + Np — 2K1 — Ky — Kg)
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Another way to look at the condition of the lemma:

Let 8* be the unrestricted coefficient vector and 5 be the

restricted coefficient vector.

The lemma requires that there exist a matrix A such that

B* = AB.

What kinds or restrictions cannot be brought into this
framework??

Consider Ey = X131 versus

Ey = X50,.

The combined model is not in consideration.
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