Economics 620, Lecture 5:

The K-Variable Linear Model II

Third assumption (Normality):

$$
\begin{aligned}
& y ; q\left(X \beta, \sigma^{2} I_{N}\right) \\
\Rightarrow & p(y)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{(N / 2)}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right)
\end{aligned}
$$

where N is the sample size.

The log likelihood function is
$\ell\left(\beta, \sigma^{2}\right)=c-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)$.
Proposition: The LS estimator $\hat{\beta}$ is the ML estimator.

Proposition: The ML estimator for σ^{2} is

$$
\sigma_{M L}^{2}=e^{\prime} e / N
$$

Proof: To find the ML estimator for σ^{2}, we solve the FOC:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-X \beta)=0 \\
& \Rightarrow \sigma^{2}=(y-X \beta)^{\prime}(y-X \beta) / N
\end{aligned}
$$

Plugging in the MLE for β gives the MLE for σ^{2}

Proposition: The distribution of $\hat{\beta}$ given a value of σ^{2} is $q\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Proof: Since $\hat{\beta}$ is a linear combination of jointly normal variables, it is normal.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Fact: If A is an $N \times N$ idempotent matrix with rank r, then there exists an $N \times N$ matrix C with
$C^{\prime} C=I=C C^{\prime}$ (orthogonal)
$C^{\prime} A C=\Lambda$,
where:

$$
\Lambda=\left[\begin{array}{c}
1 \ldots 0 \ldots 0 \\
0 \ldots 1 \ldots 0 \\
\ldots \ldots \ldots \\
0 \ldots \ldots
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] .
$$

C is the matrix whose columns are orthornormal eigenvectors of A.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Lemma: Let $z \sim q\left(0, I_{N}\right)$ and A be an $N \times N$ idempotent matrix with rank r. Then
$z^{\prime} A z \sim \chi^{2}(r)$.

Proof:

$z^{\prime} A z=z^{\prime} C C^{\prime} A C C^{\prime} z=\tilde{z} C^{\prime} A C \tilde{z}=\tilde{z}^{\prime} \wedge \tilde{z}$, where $\tilde{z}^{\prime}=$ $z^{\prime} C$.

But \tilde{z} is normal with mean zero and variance:
$E \tilde{z} \tilde{z}^{\prime}=E C^{\prime} z z^{\prime} C=C^{\prime}\left(E z z^{\prime}\right) C=C^{\prime} C=I$.

So, $z^{\prime} A z=\tilde{z}^{\prime} \wedge \tilde{z}$ is the sum of squares of r standard normal variables, i.e., $z^{\prime} A z \sim \chi^{2}(r)$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Proposition:

$$
\frac{N \sigma_{M L}^{2}}{\sigma^{2}} \sim \chi^{2}(N-K)
$$

Proof: Note that $\sigma_{M L}^{2}=e^{\prime} e / N=\varepsilon^{\prime} M \varepsilon / N$.

$$
\Rightarrow \frac{N \sigma_{M L}^{2}}{\sigma^{2}}=\frac{\varepsilon^{\prime} M \varepsilon}{\sigma^{2}} \sim \chi^{2}(N-K)
$$

using the previous lemma with $z=\varepsilon / \sigma$.

Proposition: $\operatorname{cov}\left(\sigma_{M L}^{2}, \hat{\beta}\right)=0$

Proof: $\operatorname{Ee}(\hat{\beta}-\beta)^{\prime}=\operatorname{EM\varepsilon }\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right)^{\prime}$

$$
\begin{aligned}
& =E M \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2} M X\left(X^{\prime} X\right)^{-1}=0
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.
$\Rightarrow e$ and $\hat{\beta}$ are independent.
(This depends on normality: zero covariance \Rightarrow independence)
$\Rightarrow e^{\prime} e$ and $\hat{\beta}$ are independent. \square

So, we have the complete sampling distribution of $\hat{\beta}$ and $\sigma_{M L}^{2}$.

Note on t-testing:

We now that $\frac{\hat{\beta}-\beta_{k}}{\sigma_{\beta_{k}}} \sim q(0,1)$ where σ_{β}^{2}, is the $k^{\text {th }}$ diagonal element of $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.

Estimating σ^{2} by s^{2} gives a statistic which is $t(N-K)$, using the same argument as in simple regression.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Simultaneous Restrictions

In multiple regression we can test several restrictions simultaneously. Why is this useful?

Recall our expenditure system:

$$
\begin{aligned}
\ln z_{j} & =\ln \frac{a_{j}}{\sum a_{\ell}}+\ln m-\ln p_{j} \\
\text { or } y & =\beta_{0}+\beta_{1} \ln m+\beta_{2} \ln p_{j}+\varepsilon
\end{aligned}
$$

We are interested in the hypothesis $\beta_{1}=1$ and $\beta_{2}=$ -1 . A composite hypothesis like this cannot be tested with the tools we have developed so far.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Lemma: Let $z \sim q(0, I)$, and A and B be symmetric idempotent matrices such that $A B=0$.

Thus A and B are projections to orthogonal spaces. Then $a=z^{\prime} A z$ and $b=z^{\prime} B z$ are independent.

Proof:

$a=z^{\prime} A^{\prime} A z=$ sum of squares of $A z$
$b=z^{\prime} B^{\prime} B z=$ sum of squares of $B z$.

Note that both $A z$ and $B z$ are normal with mean zero.
$\operatorname{cov}(A z, B z)=E A z z^{\prime} B^{\prime}=A E z z^{\prime} B^{\prime}=A B^{\prime}=0$

We are done. (why?)

Note: A similar argument shows that $z^{\prime} A z$ and $L z$ are independent if $A L^{\prime}=0$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Testing

Definition: Suppose $v \sim \chi^{2}(k)$ and $u \sim \chi^{2}(p)$ are independent. Then

$$
F=\frac{v / k}{u / p} \sim F(k, p)
$$

Lemma: Let M and M^{*} be idempotent with $M M^{*}=$ $M^{*}, e=M \varepsilon, e^{*}=M^{*} \varepsilon, \varepsilon \sim q\left(0, \sigma^{2} I\right)$.

Then

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) /\left(\operatorname{tr} M-\operatorname{tr} M^{*}\right)}{e^{*} e^{*} / \operatorname{tr} M^{*}} \sim F\left(\operatorname{tr} M-\operatorname{tr} M^{*}, \operatorname{tr} M^{*}\right)
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Proof: $\sigma^{-2} \operatorname{tr} M^{*}$ times the denominator is $\chi^{2}\left(\operatorname{tr} M^{*}\right)$

As for the numerator:
$e^{\prime} e-e^{* \prime} e^{*}=\varepsilon^{\prime} M^{\prime} M \varepsilon-\varepsilon^{\prime} M^{* \prime} M^{*} \varepsilon=\varepsilon^{\prime}\left(M-M^{*}\right) \varepsilon$.

Note that: $\quad\left(M-M^{*}\right)\left(M-M^{*}\right)=M^{2}-M^{*} M-$ $M M^{*}+M^{* 2}=M-M^{*}$ (idempotent).

So $e^{\prime} e-e^{* \prime} e^{*}=\varepsilon^{\prime}\left(M-M^{*}\right) \varepsilon$.

Thus, the numerator upon multiplication by $\sigma^{-2} \operatorname{tr}(M-$ M^{*}) is distributed as

$$
\chi^{2}\left(\operatorname{tr}\left(M-M^{*}\right)\right)
$$

It only remains to show that the numerator and the denominator are independent.

But $\left(M-M^{*}\right) M^{*}=0$, so we are done.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Interpretation:
$R\left[M^{*}\right] \subset R[M]$, i.e.
$e^{\prime} e$ is a restricted sum of squares
$e^{* /} e^{*}$ is an unrestricted sum of squares.
F looks at the normalized reduction in "fit" caused by the restriction.

What sort of restrictions meet the conditions of the lemma?

Proposition: Let X be $N \times H$ and X^{*} be $N \times K$ where $H<K . \quad\left(R[X] \subset R\left[X^{*}\right]\right)$.

Suppose $X=X^{*} A$
$(A$ is $K \times H)$.

Let $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ and $M^{*}=I-X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime}$.

Then M and M^{*} are idempotent and $M M^{*}=M^{*}$.
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Example 1: Leaving out variables

Consider $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$ where X_{1} is $N \times K_{1}$ and X_{2} is $N \times K_{2}$.

Hypothesis: $\beta_{2}=0$, i.e., X_{2} is not in the model.
Using the notation from the previous proposition, $X=$ X_{1} and $X^{*}=\left[X_{1} X_{2}\right]$

$$
X=X^{*} A, A=\left[\begin{array}{l}
I \\
0
\end{array}\right]
$$

Note that: $\operatorname{tr} M=N-K_{1}, \operatorname{tr} M^{*}=N-K_{1}-K_{2}$.

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K_{2}}{e^{* \prime} e^{*} /\left(N-K_{1}-K_{2}\right)} .
$$

Thus:
e is from the regression of y on $X=X_{1}$, and e^{*} is from the regression of y on $X^{*}=\left[X_{1} X_{2}\right]$.

The degrees of freedom in the numerator is the number of restrictions.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Example 2: Testing the equality of regression coefficients in two samples.

Consider

$y_{1}=X_{1} \beta_{1}+\varepsilon_{1}$ where y_{1} is $N_{1} \times 1$ and X_{1} is $N_{1} \times K$, and
$y_{2}=X_{2} \beta_{2}+\varepsilon_{2}$ where y_{2} is $N_{2} \times 1$ and X_{2} is $N_{2} \times K$.

Hypothesis: $\beta_{1}=\beta_{2}$

Combine the observations from the samples:
$y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right], X^{*}=\left[\begin{array}{lr}X_{1} & 0 \\ 0 & X_{2}\end{array}\right], \beta=\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

The unrestricted model is

$$
\begin{array}{r}
y=X^{*} \beta+\varepsilon=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
X=X^{*} A, A=\left[\begin{array}{c}
I \\
I
\end{array}\right]
\end{array}
$$

Note that $\operatorname{tr} M^{*}=N_{1}+N_{2}-2 K$ and

$$
\operatorname{tr} M=N_{1}+N_{2}-K
$$

Run the restricted and unrestricted regressions, and calculate

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K}{e^{* \prime} e^{*} /\left(N_{1}+N_{2}-2 K\right)}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Example 3: Testing the equality of a subset of coefficients

Consider

$$
y_{1}=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon_{1}
$$

$$
\text { where } X_{1} \text { is } N_{1} \times K_{1} \text { and } X_{2} \text { is } N_{1} \times K_{2}
$$

and
$y_{2}=X_{3} \beta_{3}+X_{4} \beta_{4}+\varepsilon_{2}$
where X_{3} is $N_{2} \times K_{1}$ and X_{4} is $N_{2} \times K_{4}$
Hypothesis: $\beta_{1}=\beta_{3}$

The unrestricted regression is

$$
\begin{aligned}
y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]= & {\left[\begin{array}{cccc}
X_{1} & X_{2} & 0 & 0 \\
0 & 0 & X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]+\varepsilon } \\
& =X^{*} \beta+\varepsilon
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

With the restriction, we have

$$
\begin{aligned}
y & =\left[\begin{array}{lll}
X_{1} & X_{2} & 0 \\
X_{3} & 0 & X_{4}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]+\varepsilon \\
& =X \tilde{\beta}+\varepsilon . \\
X & =X^{*} A, A=\left[\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
I & 0 & 0 \\
0 & 0 & I
\end{array}\right] .
\end{aligned}
$$

Thus,

the test statistics is:

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K_{1}}{e^{*^{\prime}} e^{*} /\left(N_{1}+N_{2}-2 K_{1}-K_{2}-K_{4}\right)}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Another way to look at the condition of the lemma:

Let β^{*} be the unrestricted coefficient vector and β be the restricted coefficient vector.

The lemma requires that there exist a matrix A such that $\beta^{*}=A \beta$.

What kinds or restrictions cannot be brought into this framework??

Consider $E y=X_{1} \beta_{1}$ versus

$$
E y=X_{2} \beta_{2} .
$$

The combined model is not in consideration.

