Economics 620, Lecture 5:

The K-Variable Linear Model II

Third assumption (Normality):

$$y; q(X\beta, \sigma^2 I_N)$$

$$\Rightarrow p(y) = \frac{1}{(2\pi\sigma^2)^{(N/2)}} \exp\left(-\frac{1}{2\sigma^2}(y - X\beta)'(y - X\beta)\right)$$

where N is the sample size.

The log likelihood function is

$$\ell(\beta,\sigma^2) = c - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} (y - X\beta)' (y - X\beta).$$

Proposition: The LS estimator $\hat{\beta}$ is the ML estimator.

Proposition: The ML estimator for σ^2 is

$$\sigma_{ML}^2 = e'e/N.$$

Proof: To find the ML estimator for σ^2 , we solve the FOC:

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} (y - X\beta)' (y - X\beta) = 0$$

$$\Rightarrow \sigma^2 = (y - X\beta)' (y - X\beta) / N$$

Plugging in the MLE for β gives the MLE for σ^2

Proposition: The distribution of $\hat{\beta}$ given a value of σ^2 is $q(\beta, \sigma^2(X'X)^{-1})$.

Proof: Since $\hat{\beta}$ is a linear combination of jointly normal variables, it is normal.

Fact: If A is an $N \times N$ idempotent matrix with rank r, then there exists an $N \times N$ matrix C with

C'C = I = CC' (orthogonal)

 $C'AC = \Lambda$,

where:

$$\Lambda = \begin{bmatrix} 1...0...0\\ 0...1...0\\0\\ 0.....0 \end{bmatrix} = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}.$$

C is the matrix whose columns are orthornormal eigenvectors of A.

Lemma: Let $z \sim q(0, I_N)$ and A be an $N \times N$ idempotent matrix with rank r. Then

$$z'Az \sim \chi^2(r).$$

Proof:

$$z'Az = z'CC'ACC'z = \tilde{z}C'AC\tilde{z} = \tilde{z}'\Lambda\tilde{z}$$
, where $\tilde{z}' = z'C$.

But \tilde{z} is normal with mean zero and variance:

$$E\tilde{z}\tilde{z}' = EC'zz'C = C'(Ezz')C = C'C = I.$$

So, $z'Az = \tilde{z}'\Lambda\tilde{z}$ is the sum of squares of r standard normal variables, i.e., $z'Az \sim \chi^2(r)$.

Proposition:

$$\frac{N\sigma_{ML}^2}{\sigma^2} \sim \chi^2 (N-K)$$

Proof: Note that
$$\sigma_{ML}^2 = e'e/N = \varepsilon' M\varepsilon/N$$
.

$$\Rightarrow \frac{N\sigma_{ML}^2}{\sigma^2} = \frac{\varepsilon' M\varepsilon}{\sigma^2} \sim \chi^2(N-K),$$

using the previous lemma with $z = \varepsilon / \sigma$.

Proposition:
$$cov(\sigma_{ML}^2, \hat{\beta}) = 0$$

Proof: $Ee(\hat{\beta} - \beta)' = EM\varepsilon((X'X)^{-1}X'\varepsilon)'$
 $= EM\varepsilon\varepsilon'X(X'X)^{-1}$
 $= \sigma^2MX(X'X)^{-1} = 0$

 $\Rightarrow e \text{ and } \hat{\beta} \text{ are } independent.$

(This depends on normality: zero covariance \Rightarrow independence)

 $\Rightarrow e'e \text{ and } \hat{\beta} \text{ are independent.} \blacksquare$

So, we have the *complete* sampling distribution of $\hat{\beta}$ and σ_{ML}^2 .

Note on t-testing:

We now that $\frac{\hat{\beta}-\beta_k}{\sigma_{\beta_k}} \sim q(0,1)$ where σ_{β}^2 , is the k^{th} diagonal element of $\sigma^2(X'X)^{-1}$.

Estimating σ^2 by s^2 gives a statistic which is t(N-K), using the same argument as in simple regression.

Simultaneous Restrictions

In multiple regression we can test several restrictions simultaneously. Why is this useful?

Recall our expenditure system:

$$\begin{aligned} \ln z_j &= & \ln \frac{a_j}{\sum a_\ell} + \ln m - \ln p_j \\ \text{or } y &= & \beta_0 + \beta_1 \ln m + \beta_2 \ln p_j + \varepsilon \end{aligned}$$

We are interested in the hypothesis $\beta_1 = 1$ and $\beta_2 = -1$. A composite hypothesis like this cannot be tested with the tools we have developed so far.

Lemma: Let $z \sim q(0, I)$, and A and B be symmetric idempotent matrices such that AB = 0.

Thus A and B are projections to orthogonal spaces. Then a = z'Az and b = z'Bz are independent.

Proof:

a = z'A'Az = sum of squares of Az

b = z'B'Bz = sum of squares of Bz.

Note that both Az and Bz are normal with mean zero.

$$cov(Az, Bz) = EAzz'B' = AEzz'B' = AB' = 0$$

We are done. (why?) ■

Note: A similar argument shows that z'Az and Lz are independent if AL' = 0.

Testing

Definition: Suppose $v \sim \chi^2(k)$ and $u \sim \chi^2(p)$ are independent. Then

$$F = rac{v/k}{u/p} \sim F(k, p).$$

Lemma: Let M and M^* be idempotent with $MM^* = M^*$, $e = M\varepsilon$, $e^* = M^*\varepsilon$, $\varepsilon \sim q(0, \sigma^2 I)$.

Then

$$F = \frac{(e'e - e^{*'}e^{*})/(trM - trM^{*})}{e^{*'}e^{*}/trM^{*}} \sim F(trM - trM^{*}, trM^{*}).$$

Proof: $\sigma^{-2}trM^*$ times the denominator is $\chi^2(trM^*)$

As for the numerator:

$$e'e - e^{*'}e^* = \varepsilon'M'M\varepsilon - \varepsilon'M^{*'}M^*\varepsilon = \varepsilon'(M - M^*)\varepsilon.$$

Note that: $(M - M^*)(M - M^*) = M^2 - M^*M - MM^* + M^{*2} = M - M^*$ (*idempotent*).

So
$$e'e - e^{*'}e^* = \varepsilon'(M - M^*)\varepsilon$$
.

Thus, the numerator upon multiplication by $\sigma^{-2}tr(M - M^*)$ is distributed as

$$\chi^2(tr(M-M^*)).$$

It only remains to show that the numerator and the denominator are independent.

But
$$(M - M^*)M^* = 0$$
, so we are done.

Interpretation:

 $R[M^*] \subset R[M]$, i.e.

e'e is a restricted sum of squares

 $e^{*\prime}e^*$ is an unrestricted sum of squares.

F looks at the normalized reduction in "fit" caused by the restriction.

What sort of restrictions meet the conditions of the lemma?

Proposition: Let X be $N \times H$ and X^* be $N \times K$ where H < K. $(R[X] \subset R[X^*])$.

Suppose $X = X^*A$ (A is $K \times H$).

Let $M = I - X(X'X)^{-1}X'$ and $M^* = I - X^*(X^{*'}X^*)^{-1}X^{*'}$.

Then M and M^* are idempotent and $MM^* = M^*$. Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 5. Copyright (c) N. M. Kiefer.

Example 1: Leaving out variables

Consider $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$ where X_1 is $N \times K_1$ and X_2 is $N \times K_2$.

Hypothesis: $\beta_2 = 0$, i.e., X_2 is *not* in the model.

Using the notation from the previous proposition, $X = X_1$ and $X^* = [X_1X_2]$

$$X = X^*A, \ A = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

Note that: $trM = N - K_1$, $trM^* = N - K_1 - K_2$.

$$F = \frac{(e'e - e^{*'}e^{*})/K_2}{e^{*'}e^{*}/(N - K_1 - K_2)}.$$

Thus:

e is from the regression of y on $X = X_1$, and e^* is from the regression of y on $X^* = [X_1X_2]$.

The degrees of freedom in the numerator is the number of restrictions.

Example 2: Testing the equality of regression coefficients in two samples.

Consider

 $y_1 = X_1 \beta_1 + \varepsilon_1$ where y_1 is $N_1 \times 1$ and X_1 is $N_1 \times K$, and

 $y_2 = X_2\beta_2 + \varepsilon_2$ where y_2 is $N_2 \times 1$ and X_2 is $N_2 \times K$.

Hypothesis: $\beta_1 = \beta_2$

Combine the observations from the samples:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \ X^* = \begin{bmatrix} X_1 & \mathbf{0} \\ \mathbf{0} & X_2 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

The unrestricted model is

$$y = X^*\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon.$$
$$X = X^*A, A = \begin{bmatrix} I\\I \end{bmatrix}$$

Note that $trM^* = N_1 + N_2 - 2K$ and

$$trM = N_1 + N_2 - K.$$

Run the restricted and unrestricted regressions, and calculate

$$F = \frac{(e'e - e^{*'}e^{*})/K}{e^{*'}e^{*}/(N_1 + N_2 - 2K)}.$$

Example 3: Testing the equality of a subset of coefficients

Consider

 $y_1 = X_1\beta_1 + X_2\beta_2 + \varepsilon_1$

where X_1 is $N_1 \times K_1$ and X_2 is $N_1 \times K_2$

and

 $y_2 = X_3\beta_3 + X_4\beta_4 + \varepsilon_2$

where X_3 is $N_2 \times K_1$ and X_4 is $N_2 \times K_4$

Hypothesis: $\beta_1 = \beta_3$

The unrestricted regression is

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 & 0 & 0 \\ 0 & 0 & X_3 & X_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} + \varepsilon$$

 $= X^*\beta + \varepsilon.$

With the restriction, we have

$$y = \begin{bmatrix} X_1 & X_2 & 0 \\ X_3 & 0 & X_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \varepsilon$$
$$= X\tilde{\beta} + \varepsilon.$$
$$X = X^*A, A = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}.$$

Thus,

the test statistics is:

$$F = \frac{(e'e - e^{*'}e^{*})/K_1}{e^{*'}e^{*}/(N_1 + N_2 - 2K_1 - K_2 - K_4)}.$$

Another way to look at the condition of the lemma:

Let β^* be the unrestricted coefficient vector and β be the restricted coefficient vector.

The lemma requires that there exist a matrix A such that $\beta^* = A\beta.$

What kinds or restrictions cannot be brought into this framework??

Consider $Ey = X_1\beta_1$ versus

 $Ey = X_2\beta_2.$

The combined model is not in consideration.