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Economics 620, Lecture 4:

The K-Variable Linear Model I

Consider the system

y1 = �+ �x1 + "1

y2 = �+ �x2 + "2

::::::::

::::::::

yN = �+ �xN + "N

or in matrix form

y = X�� + "

where y is N�1, X is N�2, � is 2�1, and " is N�1.
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K-Variable Linear Model

X =

26664
1 x1
1 x2
: .
1 xN

37775 , �� =
"
�
�

#
:

Good statistical practice requires inclusion of the column
of ones.

Consider the general model

y = X�� + "

Convention: y is N � 1, X is N �K, � is K � 1, and
" is N � 1.

X =

26664
1 x21::::xK1
1 x22::::xK2
: : :::: :
1 x2N ::::xKn

37775 , � =
26666664
�1
�2
:
:
�K

37777775 :
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More on the Linear Model

A typical row looks like:

yi = �1 + �2x2i + �3x3i + :::+ �KxKi + "i

The Least Squares Method:

First Assumption: Ey = X�

S(b) = (y �Xb)0(y �Xb)

= y0y � 2b0X 0y + b0X 0Xb

Normal Equations

X 0X�̂ �X 0y = 0

These equations always have a solution. (Clear from
geometry to come)

If X 0X is invertible

�̂ = (X 0X)�1X 0y.
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More on the Linear Model

Proposition: �̂ is a minimizer.

Proof : Let b be any other K-vector.

(y �Xb)0(y �Xb)

= (y �X�̂ +X(�̂ � b))0(y �X�̂ +X(�̂ � b))

= (y �X�̂)0(y �X�̂) + (�̂ � b)0X 0X(�̂ � b)

� (y �X�̂)(y �X�̂). (Why?)

De�nition: e = y �X�̂ is the vector of residuals.

Note: Ee = 0 and X 0e = 0.

Proposition: The LS estimator is unbiased.

Proof : E�̂ = E[(X 0X)�1X 0y]

= E[(X 0X)�1X 0(X� + ")] = �
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Geometry of Least Squares

Consider y = X� + " with

y =

"
y1
y2

#
, X =

"
x1
x2

#
:

De�nition: The space spanned by matrix X is the vec-
tor space which consists of all linear combinations of the
column vectors of X.

De�nition: X(X 0X)�1X 0y is the orthogonal projection
of y to the space spanned by X.

Proposition: e is perpendicular to X, i.e., X 0e = 0.

Proof :

e = y �X�̂ = y �X(X 0X)�1X 0y

e = (I �X(X 0X)�1X 0)y

) X 0e = (X 0 �X 0)y = 0. �
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Geometry of Least Squares (cont�d)

Thus the equation y = X�̂ + e gives y as the sum of a
vector in R[X] and a vector in N [X 0].

Common (friendly) projection matrices:

1. The matrix which projects to the space orthogonal to
the space spanned by X (i.e. to N [X 0] is

M = I �X(X 0X)�1X 0:

Note: e = My. If X is full column rank, M has rank
(N �K).

2. The matrix which projects to the space spanned by
X is

I �M = X(X 0X)�1X 0:

Note: ŷ = y � e = y �My = (I �M)y. If X is full
column rank, (I �M) has rank K.
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Example in R2

yi = xi� + "i i = 1; 2

xb

x

y

e

XX

What is the case of singular X 0X?
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Properties of projection matrices

1. Projection matrices are idempotent.

I.G. (I �M)(I �M) = (I �M):

Proof : (I �M)(I �M)

= (X(X 0X)�1X 0)(X(X 0X)�1X 0)

= X(X 0X)�1X 0 = (I �M) �

2. Idempotent matrices have eigenvalues equal to zero
or one.

Proof : Consider the characteristic equationMz = �z )
M2z =M�z = �2z.

Since M is idempotent, M2z =Mz.

Thus, �2z = �z, which implies that � is either 0 or 1:
�
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Properties of projection matrices

3. The number of nonzero eigenvalues of a matrix is
equal to its rank.

) For idempotent matrices, trace = rank.

More assumptions to the K-variable linear model:

Second assumption: V (y) = V (") = �2IN where y
and " are N -vectors.

With this assumption, we can obtain the sampling vari-
ance of �̂:

Proposition: V (�̂) = �2(X 0X)�1

Proof :

�̂ = (X 0X)�1X 0y
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= (X 0X)�1X 0X� + (X 0X)�1X 0"

hence

�̂ = � + (X 0X)�1X 0"

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 4. Copyright (c) N. M. Kiefer.



11

cont�d

V (�̂) = E(�̂ � E�̂)(�̂ � E�̂)0

= E(X 0X)�1X 0""0X(X 0X)�1

V (�̂) = (X 0X)�1X 0(E""0)X(X 0X)�1

= �2(X 0X)�1 �

Gauss-Markov Theorem: The LS estimator is BLUE.

Proof : Consider estimating c0� for some c. A possible
estimator is c0�̂ with variance �2c0(X 0X)�1c.

An alternative linear unbiased estimator: b = a0y.

Eb = a0Ey = a0X�.

Since both c0�̂ and b are unbiased, a0X = c0.
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Gauss-Markov Theorem(cont�d)

Thus, b = a0y = a0(X� + ")

= a0X� + a0" = c0� + a0".

Hence, V (b) = �2a0a:

Now, V (c0�̂) = �2a0X(X 0X)�1X 0a since c0 = a0X.

So V (b)� V (c0�̂) = �2a0Ma, p.s.d.

Hence, V (b) � V (c0�̂) �
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Estimation of �2

Proposition: s2 = e0e=(N�K) is an unbiased estimator
for �2.

Proof : e = y �X�̂ =My =M")

e0e = "0M"

Ee0e = E"0M" = E tr "0M" (Why?)

= tr E"0M" = tr EM""0 (important trick)

= tr M E""0 = �2 tr M = �2(N �K)

) s2 = e0e=(N �K) is unbiased for �2: �
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Fit: Does the Regression Model Explain the Data?

We will need the useful idempotent matrix A = I �
1(101)�110 = I � 110=N which sweeps out means.

Here 1 is an N -vector of ones.

Note that AM =M when X contains a constant term.

De�nition: The correlation coe¢ cient in the K-variable
case is

R2 = (Sum of squares due to X)/(Total sum of squares)

= 1� (e0e=y0Ay).
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More Fit

Using A, y0Ay =:
NP
i=1
(yi � �y)2

y0Ay = (Ay)0(Ay) = (Aŷ +Ae)0(Aŷ +Ae)

= ŷ0Aŷ + e0Ae since ŷ0e = 0

Thus, y0Ay = ŷ0Aŷ + e0e since Ae = e:

Scaling yields:

1 =
ŷ0Aŷ
y0Ay

+
e0e
y0Ay

What are the two terms of this splitup?
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More Fit

R2 gives the fraction of variation explained by X:

R2 = 1� (e0e=y0Ay):

Note: The adjusted squared correlation coe¢ cient is
given by

�R2 = 1� e0e=(N �K)
y0Ay=(N � 1)

(Why might this be preferable?)
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Reporting

Always report characteristics of the sample, i.e. means,
standard deviations, anything unusual or surprising, how
the data set is collected and how the sample is selected.

Report �̂ and standard errors (not t-statistics).

The usual format is

�̂

(s:e: of �̂)

Specify S2 or �2ML:

Report N and R2:

Plots are important. For example, predicted vs. actual
values or predicted and actual values over time in time
series studies should be presented.
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Comments on Linearity

Consider the following argument: Economic functions
don�t change suddenly. Therefore they are continuous.
Thus they are di¤erentiable and hence nearly linear by
Taylor�s Theorem.

This argument is false (but irrelevant).

x

f(x) f(x)

x
Continuous, not diff,
but well-approximated
by a line.

Continuous, diff,
and not well-
approximated…
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NOTE ON THE GAUSS-MARKOV THEOREM

Consider estimation of a mean � based on an observation
X.

Assume: X � F andZ
x dF = �;

Z
x2 dF = �2 + �2: (�)

Suppose that the estimator for � is h(x). Unbiasedness
implies that Z

h(x) dF = �:

Theorem: The only function h unbiased for all F and �
satisfying (�) is h(x) = x.
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Proof : Let h(x) = x+ �(x). ThenZ
�(x) dF = 0 for all F .

Suppose, on the contrary, that �(x) > 0 on some set A.
Let � 2 A and F = �� (the distribution assigning point
mass to x = �).

Then (�) is satis�ed andZ
h(x)d�� = �+ �(�) 6= �;

which is a contradiction.

Argument is the same if �(x) < 0. This shows that
�(x) = 0:�

The logic is that if the estimator is nonlinear, we can
choose a distribution so that it is biased.
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