# Economics 620, Lecture 3:

## Simple Regression II

 $\hat{\alpha}$  and  $\hat{\beta}$  are the LS estimators

 $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$  are the estimated values

The Correlation Coefficient:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.$$

 $R^2 =$ (squared) correlation between y and  $\hat{y}$ 

Note:  $\hat{y}$  is a linear function of x.

So  $corr(y, \hat{y}) = |corr(y, x)|$ .

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 3. Copyr

Copyright (c) N. M. Kiefer.

#### **Correlation**

Proposition: -1 < r < 1

$$r^{2} = \frac{\left(\sum (x_{i} - \bar{x})(y_{i} - \bar{y})\right)^{2}}{\sum (x_{i} - \bar{x})^{2} \sum (y_{i} - \bar{y})^{2}}.$$

Use Cauchy-Schwartz

$$(\sum x_i y_i)^2 \le \sum x_i^2 \sum y_i^2$$

$$\Rightarrow r^2 < 1 \Rightarrow -1 < r < 1$$

Proposition:  $\beta$  and r have the same sign.

Proof:

$$\hat{\beta} = \frac{\sum (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2} = r \frac{\sqrt{\sum (y_i - \bar{y})^2}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

#### Correlation cont'd.

$$\sum e_i^2 = \sum (y_i - \bar{y})^2 - \hat{\beta}^2 \sum (x_i - \bar{x})^2$$

SSR = TSS - SS explained by x

Proposition:

$$r^2 = 1 - \frac{SSR}{TSS} = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2}$$

Proof:

$$\frac{\sum e_i^2}{\sum (y_i - \bar{y})^2} = 1 - \hat{\beta}^2 \frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2} = 1 - r^2$$

$$\Rightarrow r^2 = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2}$$

# Warning: Correlation $\neq$ Dependence



Variables are completely dependent, correlation is zero. Correlation is a measure of linear dependence.

#### The Likelihood Function

A complete specification of the model

Conditional distribution of observables

Conditional on regressors x "exogenous variables" - variables determined outside the model

Conditional on parameters  $P(y|x,\alpha,\beta,\sigma^2)$ 

Previously, specified only mean and maybe variance

Incompletely specified = "semiparametric"

Point estimate: MLE - intuition

Details, asy. justification lecture 9.

#### **Maximum Likelihood Estimators**

Assumptions: Normality

$$p(y|x) = N(\alpha + \beta x, \sigma^{2})$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2} \left(\frac{y - \alpha - \beta x}{\sigma}\right)^{2}\right)$$

Likelihood Function:

$$L(\alpha, \beta, \sigma^2) = \prod_{i=1}^n (p(y_i|x_i))$$
  
=  $(2\pi\sigma^2)^{(-n/2)}$  exp  $\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2\right)$ 

The maximum likelihood (ML) estimators maximize L. The log likelihood function is

$$\ell(\alpha, \beta, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

#### Maximum Likelihood cont'd.

*Proposition*: The LS estimators are also the ML estimators. What is the maximum in  $\sigma^2$ ?

$$\sigma_{ML}^2 = \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 / n$$

Why?

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2$$

$$\Rightarrow \sigma_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

is this a maximum in  $\sigma$ ?

$$\frac{\partial^2 \ell}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum (y_i - \alpha - \beta x_i)^2 = \frac{-n}{2\sigma^4} < 0$$

#### **Distribution of Estimators**

These are linear combinations of normal random variables, hence they are **normal**. The means and variances have already been obtained:

Distribution of s and  $\sigma$ 

Fact:  $\sum e^2$  can be written as a sum of squares of (n-2) independent normal random variables with means zero and variances  $\sigma^2$ .

Proposition:  $s^2$  is unbiased and  $Vs^2 = 2\sigma^4/(n-2)$ .

*Proof*: Note that  $(n-2)s^2/\sigma^2$  is distributed as  $\chi^2(n-2)$ 

#### **More Distributions**

$$\Rightarrow E(s^2/\sigma^2)(n-2) = (n-2) \Rightarrow E(s^2) = \sigma^2$$

$$\Rightarrow V(s^2/\sigma^2)(n-2) = 2(n-2)$$
so  $V(s^2) = 2\sigma^4/(n-2)$ 

Proposition:  $s^2$  has higher variance than  $\sigma_{ML}^2$ 

*Proof*: Note that  $\frac{n\sigma_{ML}^2}{\sigma^2}$  is distributed as

$$\chi^{2}(n-2)$$

$$\Rightarrow E\sigma_{ML}^2 = \frac{\sigma^2(n-2)}{n}$$

$$\Rightarrow V\left(\frac{n\sigma_{ML}^2}{\sigma^2}\right) = 2(n-2) \Rightarrow V(\sigma_{ML}^2) = \frac{2\sigma^4(n-2)}{n^2}$$

$$\Rightarrow \frac{V(s^2)}{V(\sigma_{ML}^2)} = \frac{1/(n-2)}{(n-2)n^2} = \frac{n^2}{(n-2)^2} > 1$$

#### Inference

$$\hat{eta} \sim N(eta, \sigma_{eta}^2)$$
 where  $\sigma_{eta}^2 = rac{\sigma^2}{\sum (x_i - ar{x})^2} \Rightarrow rac{\hat{eta} - eta}{\sigma_{eta}} \sim n(\mathbf{0}, \mathbf{1})$ 

Definition: A 95% confidence interval for  $\hat{\beta}$  is given by  $(\hat{\beta} \mp z_{0.025}^* \sigma_{\beta})$  where z is standard normal.

Problem: The variance is unknown.

Fact: If  $z \sim n(0,1)$  and  $v \sim \chi^2(k)$  and they are independent, then  $t = \frac{z}{\sqrt{v/k}}$  is distributed as t(k).

Proposition:

$$\frac{\hat{\beta}-\beta}{s/\sqrt{\sum(x_i-\bar{x})^2}}\sim t(n-2)$$

#### **Proof:**

$$rac{(\hat{eta}-eta)\sqrt{\sum(x_i-ar{x})^2}}{\sigma}\sim n(0,1)$$
 
$$rac{s^2}{\sigma^2}(n-2)\sim \chi^2(n-2)$$
 
$$rac{(\hat{eta}-eta)\sqrt{\sum(x_i-ar{x})^2}}{s/\sigma}=rac{(\hat{eta}-eta)}{s/\sqrt{\sum(x_i-ar{x})^2}}\sim t(n-2)$$

### Independence?

$$E(\hat{\beta} - \beta)e_{j} = E[(\hat{\beta} - \beta)(e_{j} - \bar{e})]$$

$$= E[(\hat{\beta} - \beta)((\alpha - \hat{\alpha}) + (\beta - \hat{\beta})x_{j} + \varepsilon_{j}$$

$$-(\alpha - \hat{\alpha}) - (\beta - \hat{\beta})\bar{x} - \bar{\varepsilon})]$$

$$= [(\hat{\beta} - \beta)(-(\hat{\beta} - \beta)(x_{j} - \bar{x}) + (\varepsilon_{j} - \bar{\varepsilon}))]$$

$$= -(x_{j} - \bar{x})E[(\hat{\beta} - \beta)^{2}]$$

$$+E[(\hat{\beta} - \beta)(\varepsilon_{j} - \bar{\varepsilon})]$$

$$= \frac{-\sigma^{2}(x_{j} - \bar{x})}{\sum(x_{i} - \bar{x})^{2}} + E\frac{(\varepsilon_{j} - \bar{\varepsilon})\sum(x_{i} - \bar{x})\varepsilon_{i}}{\sum(x_{i} - \bar{x})^{2}}$$

### Continuation of independence argument

$$E^{\frac{(\varepsilon_j - \bar{\varepsilon})\sum (x_i - \bar{x})\varepsilon_i}{\sum (x_i - \bar{x})^2}} = \frac{\sigma^2(x_j - \bar{x})}{\sum (x_i - \bar{x})^2} - E^{\frac{\bar{\varepsilon}\sum (x_i - \bar{x})\varepsilon_i}{\sum (x_i - \bar{x})^2}}.$$

$$E^{\frac{\bar{\varepsilon}\sum(x_i-\bar{x})\varepsilon_i}{\sum(x_i-\bar{x})^2}}=0.$$

Thus,

$$E(\hat{\beta} - \beta)e_j = 0.$$

### **Violations of Assumptions**

I. 
$$Ey_i = \alpha + x_i\beta$$

II. 
$$V(y_i|x_i) = V(\varepsilon_i) = \sigma^2$$

The alternative is  $\sigma_i^2$  different across observations (heteroskedasticity).

Is the LS estimator unbiased? Is it BLUE?

If the  $\sigma_i$  are known we can run the 'transformed' regression, and will get best linear unbiased estimates and correct standard errors.

$$w_i = 1/\sigma_i$$
, let  $w_i y_i = \alpha w_i + \beta x_i w_i + \varepsilon_i w_i$ .

$$Ew_iy_i = \alpha w_i + \beta x_iw_i$$
 and  $V(w_iy_i) = V(\varepsilon_iw_i) = 1$ 

The Gauss-Markov Theorem tells that LS is BLUE in the transformed model.

### Heteroskedasticity continued

The LS estimator in the transformed model is

$$\hat{\beta}_w = \frac{\sum (x_i w_i - \overline{xw}) w_i y_i}{\sum (x_i w_i - \overline{xw})^2} \neq \hat{\beta}$$

with

$$V(\hat{\beta}) = \frac{\sum (x_i - \bar{x})^2 \sigma_i^2}{\left(\sum (x_i - \bar{x})^2\right)^2}$$

Note: The variance of  $\beta_w$  is less than the variance of  $\beta$ .

"Heteroskedasticity Consistent" standard errors:

$$V(\hat{\beta}) = E\left[\frac{\sum (x_i - \bar{x})\varepsilon_i}{\sum (x_i - \bar{x})^2}\right]^2 = E\left[\frac{\sum (x_i - \bar{x})^2 \varepsilon_i^2}{\left(\sum (x_i - \bar{x})^2\right)^2}\right]$$

insert e for  $\varepsilon$  and remove the expectation.

### More on Heteroskedasticity

Essentially this works because  $\sum \hat{e}_i^2/n$  is a reasonable estimator for  $\sum \sigma_i^2/n$ , although of course,  $\hat{e}_i^2$  is not a good estimator for  $\sigma_i^2$ .

Testing for heteroskedasticity:

Split the sample; regress  $e^2$  on stuff

III. 
$$E\varepsilon_i\varepsilon_j=0$$

The alternative is  $E\varepsilon_i\varepsilon_j\neq 0$ 

Is the LS estimator unbiased? Is it BLUE?

Testing for correlated errors:

We need a hypothesis about the correlation.

# More (last) on violations of assumptions

### IV. Normality

$$E(y_i|x_i) = \alpha + \beta x_i$$
;  $V(y_i|x_i) = \sigma^2$  but  $\varepsilon_i \sim f(\varepsilon) \neq N(0, \sigma^2)$ 

The usual suspect is a heavy-tailed distribution. Is the LS estimator unbiased? Is it BLUE?

Example:

$$f(arepsilon) = rac{1}{2\phi} \exp\left(-\left|arepsilon/\phi
ight|
ight)$$

The variance of the ML estimator is half that of the LS estimator asymptotically. The minimum absolute deviation (MAD) estimator works. It is a **robust** estimator.