Economics 620, Lecture 3:

Simple Regression |l

& and [Ai’ are the LS estimators

U, = &+ Baz'z are the estimated values

The Correlation Coefficient:

D S ) [ e I
V(i — )2 S (y; — )2

r

R? = (squared) correlation between y and ¢
Note: ¢ is a linear function of .

So corr(y,y) = |corr(y, x)|.
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Correlation
Proposition: —1 < r <1

2 _ (CE-9)wi—n)°
> (@82 2 (yi—9)°

Use Cauchy-Schwartz

(Cwiy)? < S a2 Y y?

=r?<1=-1<r<1

Proposition: (3 and r have the same sign.

Proof:

5o Sz — Ty r\/Z(yi — 7)?

Yz —E)? \/Z(acz — )2
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Correlation cont’d.

e =3(y — 9)2 — B X (w; — 7)?

SSR = TSS - SS explained by x

Proposition:
> SSR _ > e?
T = _— = J—
TSS > (yi — §)?
Proof:
> e? 1 23 (z; — T)? 1,2
> (yi — §)? > (yi — §)?
2
=’ =1— 2. —
> (yi — )
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Warning: Correlation # Dependence

Variables are completely dependent, correlation is zero.
Correlation is a measure of linear dependence.
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The Likelihood Function
A complete specification of the model
Conditional distribution of observables

Conditional on regressors x “exogenous variables” - vari-
ables determined outside the model

Conditional on parameters P(yl|z, a, 8, 0%)
Previously, specified only mean and maybe variance
Incompletely specified = “semiparametric”

Point estimate: MLE — intuition

Details, asy. justification lecture 9.
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Maximum Likelihood Estimators

Assumptions: Normality

p(ylz) = N(a+ Bz,0°)
1 ( 1 (y — o — 6w)2>
— exp | —=
vV 2mwo2 2 o
Likelihood Function:

L(a, B,0%) = TI{-1(p(yili)
n -1 _,
= @ro?) D e (5 Ti (i — o — i)’

The maximum likelihood (ML) estimators maximize L.
The log likelihood function is

n n 1
U, B,0°) = - |n(27r)—§ In 02—272 n L (yi—a—pBx;)?
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Maximum Likelihood cont’d.

Proposition: The LS estimators are also the ML estima-

tors. What is the maximum in o2?
0%\4L =iy —a— B%’z)z/n
Why?
DL = =+ S Y (3 — o — Br;)?

= U%WL = % gy — & — Bx;)?

Is this a maximum in o?

920 1 2 _ —
3(02)2—224_06 Z(yi_a_ﬁxz’) —Tﬁl<o
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Distribution of Estimators

These are linear combinations of normal random vari-
ables, hence they are normal. The means and variances
have already been obtained:

Distribution of s and o

Fact: Y e? can be written as a sum of squares of (n—2)

independent normal random variables with means zero

and variances o?2.

Proposition: s is unbiased and V's® = 2¢%/(n — 2).

Proof: Note that (n—2)s?/c? is distributed as x2(n —
2)
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More Distributions

= E(s%/0%)(n —2) = (n — 2) = E(s%) =02

= V(s?/0?)(n —2) = 2(n — 2)
so V(s%) = 20%/(n — 2)

Proposition: s2 has higher variance than O'%WL

-2
Proof: Note that UML is distributed as

x?(n — 2)

0%(n—2)

= EO'ML —

=V (mj‘{L) =2(n—2) = V(O’%WL) _ 20%(n=2)

n2

V(s?) _ 1/(n=2) _ pn2
V(es;r) (n=2)n2 (n 2)2
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Inference

A 52 3
B~ N(B,03) where 07 = <7235 = % ~n(0,1)

Definition: A 95% confidence interval for B Is given by
(BF 25 0250 3) Where z is standard normal.

Problem: The variance is unknown.

Fact: If z ~ n(0,1) and v ~ x?(k) and they are
independent, then ¢ = —~— is distributed as t(k).

Vu/k

Proposition:

TS~ =)
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Proof:

(B—B)\/g(xi_a_fy ~ n(o) 1)

S (n —2) ~ x3(n - 2)

(B—B)V 2 (z;—%)? 5
g = (5—5) — ~ t(n — 2)
s/o s/ 2 (x;—T)?

Independence?

E(B—B)e; = E[(B—B)(ej— &)l
= E[(B-B)(a—a&)+ (B —B)z; +¢;
—(a—&)— (8- P)z —2)]
= [(B=B)(—(B—B)(zj—Z)+ (c; — &))]
= —(z; — Z)E[(B — B)]
+E[(B — B)(gj — &)]
(ej — &) X(z; — T)ey
> (x; — T)?

B —0'2(£Uj — :E)
Y (wi— )2 tE
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Continuation of independence argument

E(SJ —&) D (z;—%)e; _ 02(5’73'_3_3) 62(3:1 a:)sz.
Z(xz_w)z Z(xi_a_j)z 2(371_33)2

e (@D _
Bz =

Thus,

E(B — B)ej =0.
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Violations of Assumptions

. Fy; = o+ x;0
I V(yilz;) = V(e;) = o2

The alternative is O',LZ different across observations (het-
eroskedasticity).

Is the LS estimator unbiased? Is it BLUE?

If the o; are known we can run the ‘transformed’ re-
gression, and will get best linear unbiased estimates and
correct standard errors.

w; = 1/0;, let wy; = aw; + Br;w; + e;w;.
Ewy; = aw; + Bryw; and V(w;y;) = V(e;w;) =1

The Gauss-Markov Theorem tells that LS is BLUE in the

transformed model.
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Heteroskedasticity continued

The LS estimator in the transformed model is

A 2 (mwi—Tw)wy; 2
B = >_(zjw;—zw)? 7P

with

2 > (x;—T)%0?
V(B) — (Z(xi_j)2)2

Note: The variance of 3,, is less than the variance of 5.

“Heteroskedasticity Consistent” standard errors:

N [ D (mi—E)e | > (zi—T)%e;
ViB)=E [E(wi—f)zl =k [(z(ggi—zy)z]

insert e for € and remove the expectation.
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More on Heteroskedasticity

Essentially this works because Zég/n Is a reasonable
2

estimator for Za%/n, although of course, €7 I1s not a

2

good estimator for o7.

Testing for heteroskedasticity:

2 on stuff

Split the sample; regress e
. Eeie; =0

The alternative is Ee;e; # 0

Is the LS estimator unbiased? Is it BLUE?

Testing for correlated errors:

We need a hypothesis about the correlation.
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More (last) on violations of assumptions

V. Normality

E(yi|z;) = a+ Bz V(yi|zi) = o2 but g5 ~ f(e) #
N(0, o?)

The usual suspect is a heavy-tailed distribution. Is the
LS estimator unbiased? Is it BLUE?

Example:

f(e) = p5exp (= |¢/0))

The variance of the ML estimator is half that of the LS
estimator asymptotically. The minimum absolute devia-
tion (MAD) estimator works. It is a robust estimator.
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