Economics 620, Lecture 2:
Regression Mechanics (Simple Regression)

- Observed variables: $y_{i}, x_{i} \quad i=1, \ldots, n$
- Hypothesized (model): $E y_{i}=\alpha+\beta x_{i}$ or $y_{i}=\alpha+$ $\beta x_{i}+\left(y_{i}-E y_{i}\right)$; renaming we get: $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- Unobserved: $\alpha, \beta, \varepsilon_{i}$
- EXAMPLE: ENGEL CURVES
- Utility function: $u\left(z_{1}, \ldots, z_{k}\right)=\sum_{j=1}^{k} a_{j} \ln z_{j}$.
- Budget constraint: $m=\sum_{j=1}^{k} p_{j} z_{j}$.
- FOC: $\quad \frac{a_{j}}{z_{j}}-\lambda p_{j}=0 \quad j=1, \ldots, k$

$$
\begin{aligned}
& \Rightarrow \lambda=\frac{\sum_{j=1}^{k} a_{j}}{m} \\
& \Rightarrow z_{j}=\frac{a_{j} m}{p_{j} \sum_{\ell=1}^{k} a_{\ell}} \Rightarrow z_{j} p_{j}=\frac{a_{j}}{\sum_{\ell=1}^{k} a_{\ell}} m
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Estimation

- We want to estimate: $E(y)=\alpha+\beta x$

Where y is the expenditure on good j and x is income.

According to the model we also have:

$$
\beta=a_{j} / \sum a_{\ell}, \quad \alpha=0
$$

- We would like to estimate the unknowns from a sample of n observations on y and x.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

The Least Squares Method

- The Least Squares criterion to estimate α and β is to choose $\hat{\alpha}$ and $\hat{\beta}$ to minimize the sum of squared vertical distances between $\hat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i}$ and y_{i}.
- Why do we consider the vertical distances?
- Why do we square?
- Let $S(a, b)=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.
- Partial deriviatives:

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right) \\
& \frac{\partial S}{\partial b}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right)
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Normal Equations

- Normal equations:

$$
\begin{gathered}
0=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right) \\
0=\sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right)
\end{gathered}
$$

- $\hat{\alpha}$ and $\hat{\beta}$ are the Least Squares (LS) Estimators

$$
\begin{align*}
\sum_{i=1}^{n} y_{i} & =n \hat{\alpha}+\hat{\beta} \sum_{i=1}^{n} x_{i} \tag{1}\\
\sum_{i=1}^{n} x_{i} y_{i} & =\hat{\alpha} \sum_{i=1}^{n} x_{i}+\hat{\beta} \sum_{i=1}^{n} x_{i}^{2} \tag{2}
\end{align*}
$$

- From (1):

$$
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} \text { where } \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}, \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

- Substituting into (2):

$$
\sum x_{i} y_{i}=(\bar{y}-\hat{\beta} \bar{x}) \sum x_{i}+\hat{\beta} \sum x_{i}^{2}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Normal Equations cont'd.

$$
\begin{aligned}
& \Rightarrow \sum x_{i}\left(y_{i}-\bar{y}\right)=\hat{\beta}\left(\sum x_{i}^{2}-\bar{x} \sum x_{i}\right) \\
&=\hat{\beta}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right) \\
&=\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2} \\
& \Rightarrow \hat{\beta}=\frac{\sum x_{i}\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& \Rightarrow \hat{\beta}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

- Is this a minimum? Note that:

$$
\frac{\partial^{2} S}{\partial a^{2}}=2 n ; \frac{\partial^{2} S}{\partial a \partial b}=2 \sum x_{i} ; \frac{\partial^{2} S}{\partial b^{2}}=2 \sum x_{i}^{2}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Normal Equations cont'd.

- Is the Hessian p.d.?
- $H=2\left[\begin{array}{ll}n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2}\end{array}\right]$
- YES! Use Cauchy-Schwarz:

$$
\left(\sum x_{i} z_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right)\left(\sum z_{i}^{2}\right)
$$

- Here:

$$
\left(\sum x_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right) n
$$

- Define the residuals as: $\quad e_{i}=y_{i}-\hat{\alpha}-\hat{\beta} x_{i}$
- From the normal equations: $\quad \sum e_{i}=\sum x_{i} e_{i}=0$

Proof of Minimization

- Consider alternative estimators a^{*} and b^{*} :

$$
\begin{aligned}
S\left(a^{*}, b^{*}\right)= & \sum\left(y_{i}-a^{*}-b^{*} x_{i}\right)^{2} \\
= & \sum\left[\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)+\left(\hat{\alpha}-a^{*}\right)+\left(\hat{\beta}-b^{*}\right) x_{i}\right]^{2} \\
= & \sum e_{i}^{2}+2\left(\hat{\alpha}-a^{*}\right) \sum e_{i}+2\left(\hat{\beta}-b^{*}\right) \sum x_{i} e_{i} \\
& +\sum\left[\left(\hat{\alpha}-a^{*}\right)+\left(\hat{\beta}-b^{*}\right) x_{i}\right]^{2} \\
\geq & \sum e_{i}^{2}
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Properties of Estimators

- LS estimators are unbiased:

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\alpha \sum\left(x_{i}-\bar{x}\right)+\beta \sum\left(x_{i}-\bar{x}\right) x_{i}+\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\beta+\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \Rightarrow E \hat{\beta}=\beta, \\
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}=\alpha+(\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon} \Rightarrow E \hat{\alpha}=\alpha
\end{aligned}
$$

More Properties

- We cannot get more properties without further assumptions:
- Assume:

$$
V\left(y_{i} \mid x_{i}\right)=V\left(\varepsilon_{i}\right)=\sigma^{2}, \quad \operatorname{Cov}\left(\varepsilon_{i} \varepsilon_{j}\right)=0 .
$$

- Now:

$$
\begin{aligned}
V(\hat{\beta}) & =E(\hat{\beta}-\beta)^{2}=E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{2} \\
& =\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \sigma^{2}}{\left(\sum\left(x_{i}-\bar{x}\right)^{2}\right)^{2}},
\end{aligned}
$$

using $E \varepsilon_{i} \varepsilon_{j}=0$. Thus:

$$
V(\hat{\beta})=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

More Properties cont'd.

- Now for $V(\hat{\alpha})$,

$$
\begin{gathered}
\hat{\alpha}-\alpha=(\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon} \\
\Rightarrow V(\hat{\alpha})=V(\hat{\beta}) \bar{x}^{2}+\frac{\sigma^{2}}{n} \\
\Rightarrow V(\hat{\alpha})=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]
\end{gathered}
$$

This requires $\operatorname{Cov}(\hat{\beta}, \bar{\varepsilon})=0$. Why?

$$
\begin{aligned}
& E(\hat{\beta}-\beta) \bar{\varepsilon}=E\left[\left(\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)\left(\frac{1}{n} \sum \varepsilon_{j}\right)\right] \\
& \quad=\frac{\sum\left(x_{i}-\bar{x}\right) \sigma^{2} / n}{\sum\left(x_{i}-\bar{x}\right)^{2}}=0
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Engel Curve Example cont'd.

- We know: $\quad p_{j} z_{j}=\frac{a_{j}}{\sum a_{\ell}} m$.
- Is $V\left(\varepsilon_{j}\right)=\sigma^{2}$ plausible here?
- How about logs:

$$
\ln \left(p_{j} z_{j}\right)=\ln \frac{a_{j}}{\sum a_{\ell}}+\ln m ?
$$

This implies the regression equation

$$
y=\alpha+\beta x
$$

where y is log expenditure on good j and x is log income.

- What are our expectations about the estimator values?
- Is this better?

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Covariance of Estimators

$$
\begin{aligned}
\operatorname{Cov}(\hat{\alpha}, \hat{\beta}) & =E[(\hat{\alpha}-\alpha)(\hat{\beta}-\beta)] \\
& =E\left[((\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon})\left(\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)\right] \\
& =-E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{2} \bar{x} \\
& =\frac{-\sigma^{2} \bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Gauss-Markov Theorem

- The LS estimator is the best linear unbiased estimator (BLUE).
- Proof:
define

$$
w_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

so

$$
\hat{\beta}=\sum w_{i} y_{i}
$$

Consider an alternative linear unbiased estimator:

$$
\tilde{\beta}=\sum c_{i} y_{i}
$$

Write $\quad c_{i}=w_{i}+d_{i}$.
Note:

$$
\begin{gathered}
E \tilde{\beta}=\beta \Rightarrow E \sum c_{i}\left(\alpha+\beta x_{i}+\varepsilon_{i}\right)=\beta \\
E \sum c_{i}\left(\alpha+\beta x_{i}+\varepsilon_{i}\right)=\alpha \sum c_{i}+\beta \sum c_{i} x_{i} \\
\Rightarrow \sum c_{i}=0 ; \sum c_{i} x_{i}=1
\end{gathered}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Gauss-Markov Theorem proof cont'd.

- Note that
w_{i} satisfies $\sum w_{i}=0 ; \sum w_{i} x_{i}=1$, so $\sum d_{i}=0$ and $\sum d_{i} x_{i}=0$.
- SO

$$
\begin{aligned}
V(\tilde{\beta}) & =E\left(\sum c_{i} \varepsilon_{i}\right)^{2}=\sigma^{2} \sum c_{i}^{2} \\
& =\sigma^{2} \sum\left(w_{i}+d_{i}\right)^{2} \\
& =\sigma^{2}\left[\sum d_{i}^{2}+2 \sum w_{i} d_{i}+\sum w_{i}^{2}\right]
\end{aligned}
$$

Now we have

$$
\begin{aligned}
V(\tilde{\beta})-V(\hat{\beta}) & =\sigma^{2}\left[\sum d_{i}^{2}+2 \sum w_{i} d_{i}\right] \\
& =\sigma^{2} \sum d_{i}^{2}
\end{aligned}
$$

- WHY?
- This is minimized when the estimators are identical!
- A similar argument applies for $\widehat{\alpha}$ and any linear combination of $\widehat{\alpha}$ and $\widehat{\beta}$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Estimation of Variance

- It is natural to use the sum of squared residuals to obtain information about the variance.

$$
\begin{aligned}
e_{i}= & y_{i}-\hat{\alpha}-\hat{\beta} x_{i}=\left(y_{i}-\bar{y}\right)-\hat{\beta}\left(x_{i}-\bar{x}\right) \\
= & -(\hat{\beta}-\beta)\left(x_{i}-\bar{x}\right)+\left(\varepsilon_{i}-\bar{\varepsilon}\right) \\
& \Rightarrow \sum e_{i}^{2}=(\hat{\beta}-\beta)^{2} \sum\left(x_{i}-\bar{x}\right)^{2} \\
& +\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}-2(\hat{\beta}-\beta) \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right)
\end{aligned}
$$

- This will involve σ^{2} in expectation - term by term.
- First term:

$$
E(\hat{\beta}-\beta)^{2} \sum\left(x_{i}-\bar{x}\right)^{2}=\sigma^{2}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Estimation of Variance cont'd.

- Second term:

$$
\begin{aligned}
E \sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2} & =E\left[\sum \varepsilon_{i}^{2}+n\left(\frac{1}{n} \sum \varepsilon_{i}\right)^{2}-2 \sum \varepsilon_{i} \bar{\varepsilon}\right] \\
& =n \sigma^{2}+\sigma^{2}-2 \sigma^{2}=(n-1) \sigma^{2}
\end{aligned}
$$

- Third term:

$$
\begin{aligned}
& E 2(\hat{\beta}-\beta) \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right) \\
= & 2 E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right)\right] \\
= & 2 E \frac{\left[\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}\right]^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=2 \sigma^{2}
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

Estimation of Variance cont'd.

- Adding the terms we get:

$$
E \sum e_{i}^{2}=(n-2) \sigma^{2}
$$

- This suggest the estimator:

$$
s^{2}=\left(\sum e_{i}^{2}\right) /(n-2)
$$

- This is an unbiased estimator
- It is a quadratic function of y
- This is all we can say without further assumptions

Summing Up

- With the assumption $E y_{i}=\alpha+\beta x_{i}$, we can calculate unbiased estimates of α and β (linear in y_{i}).
- Adding the assumption $V\left(y_{i} \mid x_{i}\right)=\sigma^{2}$ and $E \varepsilon_{i} \varepsilon_{j}=0$, we can obtain sampling variance for $\hat{\alpha}$ and $\hat{\beta}$, get an optimality property and an unbiased estimate for σ^{2}.
- Note the the optimality property may not be that compelling and that we have very little information about the variance estimate.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 2. Copyright (c) N. M. Kiefer.

