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Introduction to Nonparametric and Semiparametric
Estimation

Good when there are lots of data and very little prior
information on functional form.

Examples:

y = f(x) + " (nonparametric)

y = z0� + f(x) + " (partial linear)

y = f(z0�) + " (index model)

Have to have some restrictions on f to avoid a perfect
�t.

Di¤erentiability to some order, and bounded derivatives.
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 19. Copyright (c) N. M. Kiefer.



2

Estimation

Assume the errors are iid and arrange the observations in
order of the xi.

Consider y = f(x) + ".

Moving average estimator:

f̂(xi) = k
�1P yj for k values of Xj centered on Xi.

Let k increase with the sample size, but more slowly than
n.

f̂(xi) = k�1
P
yj = k

�1P f(xj) + k�1P "j
= f(xi) + f

0(xi)k
�1P(xj � xi)

+
1

2
k�1f 00(xi)

P
(xj � xi)2 + k�1

P
"j

f 0 is multiplied by zero if x is symmetric around xi.
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Estimation 2

f̂(xi) = f(xi) + 24�1(k=n)2f 00 + k�1
P
"j approxi-

mately. Hence

f̂(xi) = f(xi) +O((k=n)
2) +Op(k

�1=2):

Note these �errors� are bias and variance

(f̂(xi)� f(xi))2 = O((k=n)4) +Op(k�1).

Consistent if k !1 and k=n! 0.

�Best� trades o¤ bias and variance at the same rate:
(k=n)4 looks like k�1. Or k = O(n4=5), implying

(f̂(xi)� f(xi))2 = Op(n�4=5):
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Estimation 3

n�4=5 is the best possible rate.

However, this has asymptotic bias (proportional to f 00) -
so let k go a little slower to in�nity. Then the bias term
disappears.

Interpretation????

JUST A TRICK!!!

Generalization: Kernel Regression

f̂(xi) =
P
wj(xi)yj:

Really just weighted local averages.
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Estimation 4

Kernel: K(u) bounded, symmetric around zero, inte-
grates to 1 (a normalization).

Examples:

Uniform, Bartlett, Normal (not drawn)
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Estimation 5

wi(xi) = K((xj � xi)=�)(
P
K((xj � xi)=�)

� is like k; in fact k = 2�n.

Convergence rate is optimized (at n�4=5) when � =

O(n�1=5).

� is the bandwidth.

Usually assume a faster rate to eliminate the bias term in
constructing con�dence intervals. (JUST A TRICK.)
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Estimation 6

Smoothness Restrictions:

Example: jf 0(x)j < L

Solve min
P
(yi � ŷi)2 s.t. j(ŷi � ŷj)=(xi � xj)j < L.

Adding monotonicity adds the constraint

ŷi < ŷj for xi < xj:

Concavity adds another constraint.

Rates of convergence depend on the dimension of x (here
1) and on the number of derivatives. Maximal rate is
n�2m=(2m+d) where m is # derivatives and d is the
dimension of x.
Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 19. Copyright (c) N. M. Kiefer.



8

Estimation 7

Selection of bandwidth?

Try a few and look at the results and residuals!!

Formally, use cross valdiation.

CV: �t f̂�i using all data except the ith observation,
then predict f̂�i(xi). Then calculate

CV (�) = n�1
P
(yi � f̂�i(xi))2:

Choose � to minimize this function.

Requires a lot of computation.
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Partial Linear Model

y = z� + f(x) + "

The amazing result is that � can be estimated at the
parametric rate.

y � E(yjx) = y � E(zjx)� � f(x)
= (z � E(zjx))� + ":

Suggests regressing y � Eyjx on z � Ezjx.

Estimate these conditional expectations by nonparametric
kernel regression.

Extends easily to higher dimensional z (estimate many
conditional expectation functions and do the regression).
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Index Models

y = f(x0�) + "

Here x is k-dimensional - the linear index x0� a¤ects y
nonparametrically.

For �xed �, f can be estimated, for example, with kernel
regression, as f̂�. Estimate � by minimizing

n�1
P
(yi � f̂�(x0i�))2:

There is a lot of work on this problem. A basic result is
that � can be estimated at the usual rate (variance like
n�1).

Binary y generalizes logit, probit.
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Index Models 2

Identi�cation:

Note f and � are not separately identi�ed. A normal-
ization is necessary (typically one of the � = 1).

To estimate f consistently, at least one of the regressors
must be continuous.

(Think about it - we will use di¤erentiability assumptions
on f .)

Of course, also
P
xix

0
i must have full rank.

A little more is required.
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Speci�cation Testing

NP estimation of residual variance:

yi = f(xi) + "i

arranged in order of x, with jf 0j < L

s2 = 1=2n�1
P
(yi � yi�1)2

E(s2) = 1=2n�1
P
(f(xi)� f(xi�1))2

+1=2En�1
P
("i � "i�1)2

First term looks like (f 0[xi � xi�1])2 < (L=n)2

(x cont. distributed) Cross product?
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Speci�cation Testing 2

Second term is �2 so the estimator is consisent.

Asymptotic distribution:

n1=2(s2 � �2)! N(0; �4):

To test against a parametric alternative, calculate s2a from
the alternative and consider

n1=2(s2a � s2)=s2 ! N(0; 1)

reject if large.
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Higher Dimensions are Problems

Suppose y = f(x) = f(x1; x2) + ".

Estimate f(xi) by taking an average of the y in a neigh-
borhood of xi. Suppose the neighborhood is a � � �
square?

W/uniform x on the unit square, each neighborhood has
about �2n observations.

f̂(xi) = (�2n)�1
P
yj

= (�2n)�1
P
f(xj) + (�

2n)�1
P
"j

� f(xi) +O(�
2) +Op(1=(�n

1=2)):

Same arguments as before, but now have � instead of
�1=2:
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Higher Dimensions are Problems 2

Consistency requires � � 0 and �n1=2 � 1.

The optimal rate reduces bias and variance at the same
rate. This implies � = O(n1=6). Then

(f̂ � f)2 = Op(n�2=3).

This rate is optimal and is slower then the rate in the
1-dimensional model.

The same arguments work for kernel estimators in higher
dimensions.

Many variations are available (di¤erent kernels, band-
width choices, neighborhoods, etc.).
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Higher Dimensions are Problems 3

Want, say, 1% of data to form a local average (or local
weighted averge w/kernel).

Uniform observations, 1 dim, unit interval, local is a .01
length interval. 2 dim, unit square, local is .011=2 = :1

unit square - 1/10 the range in each dimension.

Generally, .011=p where p is the dim. Gets nonlocal fast.

Picture?

Mean distance to origin increases w/dimension - most
points are �near� the boundary.
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The source of most of this lecture and a great reference
on applied nonparametric and semiparametrics (like the
partial linear model) is Adonis Yatchew (2003).

Semiparametric Regression for the Applied Econometrician,
Cambridge University Press.
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