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Lecture 18: Nonlinear Models

The basic point is that smooth nonlinear models look like
linear models locally.

Models linear in parameters are no problem even if they
are nonlinear in variables. For example

'(y) = �0 + �1 1(x1) + �2 2(x2) + :::

with ' and  known functions of observable regressors,
is still a linear regression model. However,

y = �1 + �2e
x�3 + "

is nonlinear (arising, for example, as a solution to a dif-
ferential equation).
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Notation:

yi = f(Xi; �) + "i = fi(�) + "i i = 1; 2; :::; N .

Stacking up yields

y = f(�) + "

where y is N � 1, f(�) is N � 1, � is K � 1 and " is
N � 1. For Xi i = 1; 2; :::; N �xed, f : RK ! RN .

@f

@�0
= F (�) =

26664
@f1
@�1

: : : @f1
@�K

� : : : �
@fN
@�1

: : : @fN
@�K

37775 :

Obviously F (�) is N �K. Assume E" = 0 and V " =
�2I.
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The nonlinear least squares estimator minmizes

S(�) =
PN
i=1(yi � fi(�))

2 = (y � f(�))0(y � f(�)).

Di¤erentiation yields

@

@�0
S(�) =

@

@�0
(y � f(�))0(y � f(�))

= �2(y � f(�))0F (�):

Thus, the nonlinear least squares (NLS) estimator �̂ sat-
is�es

F (�̂)0(y � f(�̂)) = 0.

(Are these equations familiar?)

This is like the property X 0e = 0 in the LS method.
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Computing �̂:

The Guass-Newton method is to use a �rst-order expan-
sion of f(�) and �T (a �trial� value) in S(�), giving

ST (�) = (y � f(�T )� F (�T )(� � �T ))
0(y � f(�T )�

F (�T )(� � �T )).

Minimizing ST in � gives

�M = �T + [F (�T )
0F (�T )]�1F (�T )0(y � f(�T )).

(Exercise: Show �M is the minimizer.)

We know ST (�M) � ST (�T ).

Is it true that S(�M) � S(�T )?
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The method is to use �M for the new trial value, expand
again, minimize and iterate. But there can be problems.
For example, it is possible that S(�M) > S(�T ), but
there is a �� between �T and �M ,

�� = �T + �(�M � �T )

for some � < 1, with S(��) � S(�T ). This suggests
trying a decreasing sequence of ��s in [0; 1], leading to
the modi�ed Gauss-Newton method.

(1) Start with �T and compute

DT = [F (�T )
0F (�T )]

�1F (�T )
0(y � f(�T )).

(2) Find � such that S(�T + �DT ) < S(�T ).

(3) Set �� = �T + �DT and go to (1) using �
� as a

new value for �T .
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Stop when the changes in parameter values and S be-
tween iterations are small. Good practice is to try several
di¤erent starting values.

Estimation of �2 = V ("):

s2 =
(y � f(�̂))0(y � f(�̂))

N � k

�2 =
(y � f(�̂))0(y � f(�̂))

N

Why are there two possibilities?
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Note the simpli�cation possible when the model is linear
in some of the parameters (as in the example)

y = �1 + �2 exp(�3x) + ":

Here, given �3, the other parameters can be estimated
by OLS. Thus the sum of squares function S can be
concentrated, that is written as a function of one pa-
rameter alone. The nonlinear maximization problem is
1-dimensional, not 3. This is an important trick.

We used the same device to estimate models with auto-
correlation the ��di¤erenced model could be esimated
by OLS conditional on �.
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Inference:

We can show that

�̂ = �0 + (F (�0)
0F (�0))

�1F (�0)
0"+ r

where �0 is the true parameter value and plimN1=2r = 0
(show). So r can be ignored in calculating the asymp-
totic distribution of �̂. This is just like the expression
in the linear model - decomposing �̂ into the true value
plus sampling error.

Thus the asymptotic distribution of N1=2(�̂ � �0) is

N

0@0; �2 (F (�0)0F (�0)
N

!�11A :

So the approximate distribution of �̂ becomes

N
�
�0; �

2(F (�0)
0F (�0))

�1� :
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In practice �2 is estimated by s2 or �̂2 and

F (�0)
0F (�0)

is estimated by

F (�̂)0F (�̂).

Check that this is OK.

Applications:

1. The overidenti�ed SEM is a nonlinear regression
model (linear in variables, nonlinear in parameters) - con-
sider the reduced form equations in terms of structural
parameters.

2. Many other models - more to come.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 18. Copyright (c) N. M. Kiefer.



11

E¢ ciency: Consider another consistent estimator ��

with �sampling error� in the form

n1=2(�� � �) = (F (�0)
0F (�0))�1F (�0)0"+ C0"+ r.

It can be shown, in a proof like that of the Gauss-Markov
Theorem, that the minimum variance estimator in this
class (locally linear) has C = 0.

A better property holds when the errors are iid normal.
Then, the NLS estimator is the MLE, and we have the
Cramer-Rao e¢ ciency result.
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Nonlinear SEM

Let yi = f(Zi; �) + "i = fi(�) + "I .

Where now Z is used to indicate included endogenous
variables. NLS will not be consistent (why not?). The
trick is to �nd instruments W and look at

W 0y =W 0f(�) +W 0":

If the model is just-identi�ed, we can just set W 0" = 0

(its expected value) and solve. Otherwise, we can do
nonlinear GLS, minimizing the variance-weighted sum of
squares

(y � f(�))0W (W 0W )�1W 0(y � f(�)):
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This �̂ is called the nonlinear 2SLS estimator (by Amemiya,
who studied its properties in 1974). Note that there are
not two separate stages.

Speci�cally, it might be tempting to just obtain a �rst
state Ẑ = (I �M)Z = [Ŷ2 � X1] and do nonlinear
regression of y on f(Ẑ; �).

This does not necessarily work. Ẑ is orthogonal to ",
but f may not be. In the linear regression case, we want
Ẑ0" = 0. The corresponding condition here is F̂ 0" = 0.
Since F̂ depends generally on �, there is no real way to
do this in stages.
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Asymptotic Distribution Theory

n�1=2(� � �0)

! N

0@0; �2 (F (�0)0(W (W 0W )�1W 0)F (�0)
N

!�11A :

In practice �2 is estimated by

(y � f(Z; �̂))0(y � f(Z; �̂))=n

(or over n� k) and F (�0) is esimated by F (�̂).

Don�t forget to remove the factor N�1 in the variance
when approximating the variance of your estimator.

The calculation is exactly like the usual calculation of the
variance of the GLS estimator.
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MISCELLANEOUS:

Proposition:

P1
I=1(fi(�0)� fi(�

0))2 =1, �0 6= �0

is necessary for the existence of a consistent NLS estima-
tor. (Compare this with OLS.)

Funny example: Consider yi = e��i + "i where � 2
(0; 2�) and V ("i) = �2. Is there a consistent estimator?

Consistency can be shown (generally, not just in this ex-
ample) using regularity conditions, not requiring deriva-
tives. Normality can be shown using �rst but not second
derivatives.
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Many models can be set up as nonlinear regressions - like
qualitative dependent variable models. Sometimes it is
hard to interpret parameters. We mgiht be interested in
functions of parameters, for example elasticities.

Tests on functions of parameters:

Remember the delta-method. Let �̂ � N(�0;
P
) be a

consistent estimator of � whose true value is �0. Suppose
g(�) is the quantity of interest. Expanding g(�̂) around
�0 yields

g(�̂) = g(�0) +
@g
@� j�=�0(�̂ � �0)+ more.
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This implies that

V (g(�̂)) = E(g(�̂)� g(�0))
2 �

�
@g
@�0

�P�
@g
@�0

�0
:

Asymptotically, g(�̂) � N(g(�0), V (g(�̂)). This is a
very useful method. It also shows that normal approxi-
mation may be poor. (Why?) How can the normal ap-
proximation be improved? This is a deep question. One
trick is to choose a parametrization for which @2`=@�@�0

is constant or nearly so. Why does this work?

Consider the Taylor expansion of the score......
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