Lecture 16: Estimation of Simultaneous Equations Models

Consider $y_{1}=Y_{2} \gamma+X_{1} \beta+\varepsilon_{1}$ which is an equation from a system.

We can rewrite this at $y_{1}=Z \delta+\varepsilon_{1}$ where $Z=\left[Y_{2} X_{1}\right]$ and $\delta=\left[\gamma^{\prime} \beta^{\prime}\right]^{\prime}$.

Note that Y_{2} is jointly determined with y_{1}, so

$$
\operatorname{plim}(1 / N) Z^{\prime} \varepsilon_{1} \neq 0 \text { (usually). }
$$

IV Estimation:

The point of IV estimation is to find a matrix of instruments W so that

$$
\operatorname{plim} \frac{W^{\prime} \varepsilon_{1}}{N}=0
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16.
Copyright (c) N. M. Kiefer.
and

$$
\operatorname{plim} \frac{W^{\prime} Z}{N}=Q
$$

where Q is nonsingular.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

The IV estimator is $\left(W^{\prime} Z\right)^{-1} W^{\prime} y_{1}$. As in the lecture on dynamic models, multiplying the model by the transpose of the matrix of instruments yields $W^{\prime} y_{1}=W^{\prime} Z \delta+$ $W^{\prime} \varepsilon_{1}$ which gives $\hat{\delta}_{I V}$.

Asymptotic distribution of $\hat{\delta}_{I V}$:

Note that $\hat{\delta}_{I V}-\delta=\left(W^{\prime} Z\right)^{-1} W^{\prime} \varepsilon_{1}$. Assume that

$$
\frac{W^{\prime} \varepsilon_{1}}{\sqrt{N}} \rightarrow N\left(0, \sigma^{2} \frac{W^{\prime} W}{N}\right)
$$

(Is this a sensible assumption? Recall the CLT.)

Then

$$
\sqrt{N}\left(\hat{\delta}_{I V}-\delta\right) \rightarrow N\left(0, \sigma^{2} \sum_{\delta}\right)
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.
where
$\sum_{\delta}=N\left(W^{\prime} Z\right)^{-1} W^{\prime} W\left(W^{\prime} Z\right)^{-1}=(1 / N) Q^{-1} W^{\prime} W Q^{-1}$.

The question is what to use for W. Suppose we use X.

Multiplying by the tranpose of the matrix of instruments gives $X^{\prime} y_{1}=X^{\prime} Z \delta+X^{\prime} \varepsilon_{1}$.

For this system of equations to have a solution, $X^{\prime} Z$ has to be square and nonsingular. When is this possible?

Note the following dimensions: $\quad X$ is $N \times K, X_{1}$ is $N \times K_{1}$ and Y_{2} is $N \times\left(G_{1}-1\right)$. This, of course, requires $K=K_{1}+G_{1}-1$.
(Recall the order condition: $K \geq K_{1}+G_{1}-1$.)

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

Thus, the above procedure works when the equation is just identified.

The resulting IV estimates are indirect least squares which we saw last time.

Suppose $K<K_{1}+G_{1}-1$. Then what happens? Consider the supply and demand example. This is the underidentified case.

Suppose $K>K_{1}+G_{1}-1$. Then $X^{\prime} y_{1}=X^{\prime} Z \delta+$ $X^{\prime} \varepsilon_{1}$ is K equations in $K_{1}+G_{1}-1$ unknowns (setting $X^{\prime} \varepsilon_{1}$ to 0 which is its expectation). We could choose $K_{1}+G_{1}-1$ equations to solve for δ - there are many ways to do this, typically leading to different estimates. This is the overidentified case.

Another way to look at this case is as a regression model - with K "observations" on the dependent variable.

We could apply the LS method, but the GLS is more efficient since $V\left(X^{\prime} \varepsilon_{1}\right)=\sigma^{2}\left(X^{\prime} X\right)\left(\neq \sigma^{2} I\right)$.

The observation matrix is $X^{\prime} y_{1}$ and $X^{\prime} Z$. GLS gives the estimator

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1}
$$

In the just-identified case (where $X^{\prime} Z$ is invertible),

$$
\begin{aligned}
\hat{\delta} & =\left(X^{\prime} Z\right)^{-1} X^{\prime} X\left(Z^{\prime} X\right)^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1} \\
& =\left(X^{\prime} Z\right)^{-1} X^{\prime} y_{1}=\hat{\delta}_{I V} \text { with } W=X
\end{aligned}
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16.

TWO-STAGE LEAST SQUARES:

Return to the overidentified case:

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1} .
$$

Proposition: The estimator

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1}
$$

is the two-stage least squares (2SLS or TSLS) estimator.

Why is $\hat{\delta}$ called the TSLS estimator?

Let $\bar{M}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=I-M$.
Then $\hat{\delta}=\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} y_{1}$.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

We will write out the expression for $\hat{\delta}$.

$$
\hat{\delta}=\left[\begin{array}{cc}
\hat{Y}_{2}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\hat{Y}_{2}^{\prime} y_{1} \\
X_{1}^{\prime} y_{1}
\end{array}\right]
$$

Now: $\bar{M} Y_{2}=X\left(X^{\prime} X\right)^{-1} X^{\prime} Y_{2}=\hat{Y}_{2}=X \hat{\Pi}_{2}$ which is the LS predictor of Y_{2}.

$$
Z^{\prime} \bar{M} Z=\left[\begin{array}{ll}
Y_{2}^{\prime} \bar{M} Y_{2} & Y_{2}^{\prime} \bar{M} X_{1} \\
X_{1}^{\prime} \bar{M} Y_{2} & X_{1}^{\prime} \bar{M} X_{1}
\end{array}\right]
$$

Note that $X_{1}^{\prime} \bar{M} X_{1}=X_{1}^{\prime} X_{1} \cdot\left(R\left[X_{1}\right] \subset R[X] \Rightarrow \bar{M} X_{1}=X_{1} ; I\right.$

Also: $\quad Y_{2}^{\prime} \bar{M} Y_{2}=Y_{2}^{\prime} \bar{M} \bar{M} Y_{2}=\hat{Y}_{2}^{\prime} \hat{Y}_{2}$.

So,

$$
\hat{\delta}=\left[\begin{array}{ll}
\hat{Y}_{2}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\hat{Y}_{2}^{\prime} y_{1} \\
X_{1}^{\prime} y_{1}
\end{array}\right] .
$$

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.
$\hat{\delta}$ is the coefficient vector from a regression of y_{1} on \hat{Y}_{2} and X_{1}.

Interpretation as 2SLS? Interpretation as IV?

Proposition: 2SLS is IV estimation with $W=\left[\hat{Y}_{2} X_{1}\right]$.

Proof: Note that

$$
W^{\prime} Z=\left[\begin{array}{cc}
\hat{Y}_{2}^{\prime} Y_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]=\left[\begin{array}{cc}
\hat{Y}_{2}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right] .
$$

This is the matrix appearing inverted in $\hat{\delta}$.

Asymptotic distribution of $\hat{\delta}$: We know this from IV results.

Note that $\hat{\delta}=\delta+\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} \varepsilon_{1}$. The asymptotic variance of $N^{1 / 2}(\hat{\delta}-\delta)$ is the asymptotic variance of $N^{1 / 2}\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} \varepsilon_{1}=u$.

$$
\begin{aligned}
\operatorname{Var}(u) & =N \sigma^{2}\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M}^{\prime} Z\left(Z^{\prime} \bar{M} Z\right)^{-1} \\
& =N \sigma^{2}\left(Z^{\prime} \bar{M} Z\right)^{-1}
\end{aligned}
$$

Remember to remove the N in calculating estimated variance for $\hat{\delta}$. (Why?)

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

Estimation of σ^{2} :

$$
\hat{\sigma}^{2}=\left(y_{1}-Z \hat{\delta}\right)^{\prime}\left(y_{1}-Z \hat{\delta}\right) / N
$$

Note that $Z=\left[Y_{2} X_{1}\right]$ appears in the expressions for $\hat{\sigma}^{2}$, not $\left[\hat{Y}_{2} X_{1}\right]$.

If you regress y_{1} on \hat{Y}_{2} and X_{1}, you will get the right coefficients but the wrong standard errors.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

GEOMETRY OF 2SLS:

Take:
$N=3$ (observations)
$K=2$ (exogenous variables),
$K_{1}=1$ (included exogenous variables) and
$G_{1}=2$ (included endogenous variables - one is normalized).

How many parameters?

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

2SLS

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.
\hat{Y}_{2} is in the plane spanned by X_{1} and $X_{2} . y_{1}$ is projected to the plane spanned by \hat{Y}_{2} and X_{1}.

Note that X_{1} and X_{2} and X_{1} and \hat{Y}_{2} span the same plane. (Why?)

Model is just identified (projection of both stages is to the same plane).

What happens if the model is overidentified? (For example, $K_{1}=0$, that is, no included regressors).

What if underidentified? (For example, $K_{2}=2$, that is, no excluded regressors).

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. Copyright (c) N. M. Kiefer.

