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Lecture 16: Estimation of Simultaneous Equations
Models

Consider y1 = Y2 + X1� + "1 which is an equation
from a system.

We can rewrite this at y1 = Z�+"1 where Z = [Y2 X1]
and � = [0 �0]0.

Note that Y2 is jointly determined with y1, so

plim(1=N)Z0"1 6= 0 (usually):

IV Estimation:

The point of IV estimation is to �nd a matrix of instruments
W so that

plim
W 0"1
N

= 0
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and

plim
W 0Z
N

= Q

where Q is nonsingular.
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The IV estimator is (W 0Z)�1W 0y1. As in the lecture on
dynamic models, multiplying the model by the transpose
of the matrix of instruments yields W 0y1 = W 0Z� +
W 0"1 which gives �̂IV .

Asymptotic distribution of �̂IV :

Note that �̂IV � � = (W 0Z)�1W 0"1. Assume that

W 0"1p
N

! N

 
0; �2

W 0W
N

!
:

(Is this a sensible assumption? Recall the CLT.)

Then
p
N(�̂IV � �)! N(0; �2

P
�)
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whereP
� = N(W

0Z)�1W 0W (W 0Z)�1 = (1=N)Q�1W 0WQ�1.

The question is what to use for W . Suppose we use X.

Multiplying by the tranpose of the matrix of instruments
gives X 0y1 = X 0Z� +X 0"1.

For this system of equations to have a solution, X 0Z has
to be square and nonsingular. When is this possible?

Note the following dimensions: X is N � K, X1 is
N � K1 and Y2 is N � (G1 � 1). This, of course,
requires K = K1 +G1 � 1.

(Recall the order condition: K � K1 +G1 � 1.)
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Thus, the above procedure works when the equation is
just identi�ed.

The resulting IV estimates are indirect least squares which
we saw last time.

Suppose K < K1 + G1 � 1. Then what happens?
Consider the supply and demand example. This is the
underidenti�ed case.

Suppose K > K1 + G1 � 1. Then X 0y1 = X 0Z� +
X 0"1 is K equations in K1+G1� 1 unknowns (setting
X 0"1 to 0 which is its expectation). We could choose
K1 + G1 � 1 equations to solve for �- there are many
ways to do this, typically leading to di¤erent estimates.
This is the overidenti�ed case.
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Another way to look at this case is as a regression model
- with K �observations�on the dependent variable.

We could apply the LS method, but the GLS is more
e¢ cient since V (X 0"1) = �2(X 0X)( 6= �2I).

The observation matrix is X 0y1 and X 0Z. GLS gives
the estimator

�̂ = [Z0X(X 0X)�1X 0Z]�1Z0X(X 0X)�1X 0y1.

In the just-identi�ed case (where X 0Z is invertible),

�̂ = (X 0Z)�1X 0X(Z0X)�1Z0X(X 0X)�1X 0y1
= (X 0Z)�1X 0y1 = �̂IV with W = X.
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TWO-STAGE LEAST SQUARES:

Return to the overidenti�ed case:

�̂ = [Z0X(X 0X)�1X 0Z]�1Z0X(X 0X)�1X 0y1.

Proposition: The estimator

�̂ = [Z0X(X 0X)�1X 0Z]�1Z0X(X 0X)�1X 0y1

is the two-stage least squares (2SLS or TSLS) estimator.

Why is �̂ called the TSLS estimator?

Let �M = X(X 0X)�1X 0 = I �M .

Then �̂ = (Z0 �MZ)�1Z0 �My1.
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We will write out the expression for �̂.

�̂ =

"
Ŷ 02Ŷ2 Ŷ 02X1
X 01Ŷ2 X 01X1

#�1 "
Ŷ 02y1
X 01y1

#
:

Now: �MY2 = X(X 0X)�1X 0Y2 = Ŷ2 = X�̂2 which
is the LS predictor of Y2:

Z0 �MZ =

"
Y 02 �MY2 Y 02 �MX1
X 01 �MY2 X 01 �MX1

#

Note thatX 01 �MX1 = X
0
1X1.

�
R[X1] � R[X]) �MX1 = X1; �MX = X

�
.

Also: Y 02 �MY2 = Y
0
2
�M �MY2 = Ŷ

0
2Ŷ2.

So,

�̂ =

"
Ŷ 02Ŷ2 Ŷ 02X1
X 01Ŷ2 X 01X1

#�1 "
Ŷ 02y1
X 01y1

#
:
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�̂ is the coe¢ cient vector from a regression of y1 on Ŷ2
and X1.

Interpretation as 2SLS? Interpretation as IV?

Proposition: 2SLS is IV estimation with W = [Ŷ2X1]:

Proof : Note that

W 0Z =

"
Ŷ 02Y2 Ŷ 02X1
X 01Ŷ2 X 01X1

#
=

"
Ŷ 02Ŷ2 Ŷ 02X1
X 01Ŷ2 X 01X1

#
:

This is the matrix appearing inverted in �̂. �
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Asymptotic distribution of �̂: We know this from IV
results.

Note that �̂ = �+(Z0 �MZ)�1Z0 �M"1. The asymptotic
variance of N1=2(�̂ � �) is the asymptotic variance of
N1=2(Z0 �MZ)�1Z0 �M"1 = u.

V ar(u) = N�2(Z0 �MZ)�1Z0 �M 0Z(Z0 �MZ)�1

= N�2(Z0 �MZ)�1.

Remember to remove theN in calculating estimated vari-
ance for �̂. (Why?)
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Estimation of �2:

�̂2 = (y1 � Z�̂)0(y1 � Z�̂)=N .

Note that Z = [Y2X1] appears in the expressions for �̂2,
not [Ŷ2X1].

If you regress y1 on Ŷ2 and X1, you will get the right
coe¢ cients but the wrong standard errors.
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GEOMETRY OF 2SLS:

Take:

N = 3 (observations)

K = 2 (exogenous variables),

K1 = 1 (included exogenous variables) and

G1 = 2 (included endogenous variables - one is normal-
ized).

How many parameters?
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Ŷ2 is in the plane spanned byX1 andX2. y1 is projected
to the plane spanned by Ŷ2 and X1.

Note that X1 and X2 and X1 and Ŷ2 span the same
plane. (Why?)

Model is just identi�ed (projection of both stages is to
the same plane).

What happens if the model is overidenti�ed? (For ex-
ample, K1 = 0, that is, no included regressors).

What if underidenti�ed? (For example, K2 = 2, that is,
no excluded regressors).
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