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Lecture 15: Introduction to the Simultaneous
Equations Model

The statistics framework for the simultaneous equations
model (SEM) is the multivariate regression. For example,
let E(yjX;�) = �X and V (yjX;�) = P

where
y: 2� 1 X: 3� 1
�: 2� 3 P

: 2� 2:

There are really 5 variables (y;X) but we condition on
X. This is a modelling choice.
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Suppose y = (q; p), a quantity and a price, and X =

(x1; x2; x3) where x3 = 1 with

Eq = �11x1 + �12x2 + �13 and
Ep = �21x1 + �22x2 + �23:

)
(I)

Perhaps, x1 is �weather� and x2 is income and we are
modeling an agricultural market.

Economically,

qS = �11p+ 
11x1 + 
13
qD = �21p+ 
22x2 + 
23

qS = qD:

9>=>; (II)

This is more natural - a demand and supply equation and
an equilibrium condition determining q and p.
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De�nition: Equation system (II) is the structural form.

De�nition: Multivariate regression (I) is the reduced form.

Note: Restrictions on structure like 
12 = 0, impose
nonlinear restrictions on the reduced form.

The reduced form model achieves the �reduction in data
dimension�possible through statistical modeling. Thus,
a reduced form parametrization is in 1�1 correspondence
with the su¢ cient statistic.

Additional reduction in dimension is possible with the use
of theoretical models; these lead to structural models (or
structural parametrizations).
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Indirect Least Squares:

Solving the structure for p and q yield

q =

11�21
�11 � �21

x1 �
�11
22
�11 � �21

x2 +
�11
23 � �21
13

�11 � �21

p =

11

�11 � �21
x1 �


22
�11 � �21

x2 +

23 � 
13
�11 � �21

:

These equations determine � in terms of � and 
.
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Given

�11 = ��12
�22

; �21 = �
�11
�21

;


11 = ��21(�11 � �21), etc.

There are 6 elements of � and 6 � and 
. Thus, � can
be estimated by the LS method and we can solve for �
and 
. This is the Indirect Least Squares method.

Why not estimate �11, 
11 and 
13 by regressing q on
p and x1?
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Identi�cation:

Underidenti�cation:

Suppose 
22 = 0. Then

q = �11x1 + �13

p = �21x1 + �23

is the implied reduced form. Then the 4 reduced form
parameters determine �12 and 
23 (the demand curve)
but no more. This supply curve is underidenti�ed.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 15. Copyright (c) N. M. Kiefer.



7

Overidenti�cation:

Suppose we still have 
22 = 0 and 
12 6= 0. Then

qS = �11p+ 
11x1 + 
12x2 + 
13

qD = �21p+ 
21x1 + 
22x2 + 
23

qS = qD:

In reduced form,

q =

11�21x1
�11 � �21

+

12�21x2
�11 � �21

+ constant

p =

11x1

�11 � �21
+


12x2
�11 � �12

+ constant.

Now �21 = �11=�21 = �12=�22.
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If � is esimated, the 2 estimates of �21 will not usually
be equal. In this case, �21 is overidenti�ed.

It is natural to estimate �21 by a weighted average. The
whole point of SEM estimation is �nding the right weights
to use to combine the reduced form estimates.

Underidenti�caiton as (exact) collinearity :

qS = �11p+ 
11x1 + 
13 (underidenti�cation)

qD = �21p +
23 (identi�cation)

qS = qD
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The weighted average of qS and qD is

q = (��11 + (1� �)�21)p+ �
11x1

+�
13 + (1� �)
23.

This is indistinguishable from qS when parameters are
unknown.

The point is that if we �t an equation like qS, we can�t
say what the paremeters are other than a mix of demand
and supply parameters.
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Classical identi�cation conditions:

First, restrict attention to a 2-equation system.

Make a table of which variables are in which equations.
For example, the following table does this for the original
model:

q p x1 x2 constant
qS

p p p p

qD
p p p p

Order condition: There is at least one blank space in
the row of the identi�ed equation. This is a necessary
condition.

Rank condition: The variable left out of the equation
considered must appear in the other. This is a necessary
condition.
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The order condtion and the rank condition together are
both necessary and su¢ cient.

Note that we are considering only the class of exclusion
restrictions on the structure. Rank and order condition
are not necessary when broader restrictions are permitted.

Consider the identi�cation of the �rst equation in the
following G-equation table. Note that y is G � 1 and
X is K � 1.
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y1 y2 ... ... yG x1 x2 ... ... xK
Eq.1

p p p p

Eq.2
...
...
Eq. G

A1 A2

Order condition: If the number of blank spaces in row
1 is greater than or equal to the number of endogenous
variables minus one (i.e., G�1), then equation 1 is iden-
ti�ed. (Why?)
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Rank condition: The matrix formed by taking coe¢ cients
corresponding to blanks in row 1, that is, the matrix

A = [A1
...A2

...?],

has rank G� 1.

Other sources of identi�cation:

Consider the following structural model:

qS = �11p+ 
11x1 + 
13 + u

qD = �21p +
23 + v

qS = qD.

Assume that Euv = 0. Note that this is a restriction.
Assume further that Eu = Ev = 0, Eu2 = �2u and
Ev = �2v.
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Consider the following equation:

q = (��11+(1��)�21)p+�
11x1+ constant +�u+
(1� �)v

q = �11p+ 
11x1+ constant +u�.

This equation is distinguishable from qS since u� is cor-
related with v for � 6= 1.

In reduced form:

q = �11x1 + �12 +W1

p = �21x1 + �22 +W2

W1 = (�21u� �11v)=(�21 � �11)

W2 = (u� v)=(�21 � �11).
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Now � can be estimated by the LS method and so can

EW 2
1 = �11 = (�

2
21�

2
u + �11�

2
v)=(�21 � �11)2

EW 2
2 = �22 = (�

2
u + �

2
v)=(�21 � �11)2

EW1W2 = �12 = (�21�
2
u + �11�

2
v)=(�21 � �11)2.

These equations and our earlier formulas can be used to
solve for all the structural parameters.

Note that the rank and order conditions are not satis�ed,
illustrating that the conditions are not necessary once the
set of allowable restrictions is expanded.
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