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Lecture 14: LAGS AND DYNAMICS

Modern time-series analysis does not treat autocorrela-
tion as necessarily a property of the �errors�, but as an
indication of potentially interesting economic dynamics.

De�nition: The lag operator L is de�ned such that
LXt = Xt�1and in general, LSXt = Xt�S.

De�nition: D(L) is a polynomial of order S in L such
that

D(L)Xt = �0Xt + �1LXt + �2L
2Xt + :::+ �SL

SXt
= �0Xt + �1Xt�1 + �2Xt�2 + :::+ �SXt�S.
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The above polynomial is of order S. It can be of in�nite
order:

D(L)Xt =
1P
i=0

�iL
iXt�i:

Suppose yt = �+D(L)Xt+"t, where D(L) is of order
S.

Interpretation: If Xt is �xed at �x, then this implies that
Eyt is �xed at �y = �+D(1)�x where

D(1) =
SP
i=0

�i.

Consider a change in x to a new constant level. This
implies a change in �y, but this occurs slowly.
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The e¤ect at zero lag is �0. �0 is referred to as the �im-
pact multiplier�, and it represents the immediate e¤ect
of a change in �x. At lag 1, the e¤ect is �0, etc.

The total e¤ect is given by
SP
i=0

�i which is equal to D(1).

Note that �i=
SP
i=0

�i gives the proportion of total impact

occurring at lag i.

De�nition: The mean lag is given byP
�iiP
�i
=
D0(1)
D(1)

where D0(1) is the derivative of D(L) with respect to L
evaluated at L = 1.
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We usually want to restict the �i and not estimate (S+1)
free coe¢ cients if S is large. To this end, we generally
put some kind of pattern on the lags.

Example: Adaptive expectations

Suppose yt = � + �X�t+1 + "t where X
�
t+1 is the ex-

pected X in period t+ 1.

Suppose

X�t+1 �X�t = (1� �)(Xt �X�t ) or

X�t+1 = (1� �)Xt + �X�t .

Interpretation?

Iterating gives

X�t+1 = (1� �)(Xt + �Xt�1 + �2Xt�2 + :::).
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Substituting in the expression for yt yields

yt = �+ �(1� �)(Xt + �Xt�1 + :::) + "t.

This is D(L) with S =1 and �i = �(1� �)�i.

Use the trick by Koyck.

yt = �+ �(1� �)(Xt + �Xt�1 + :::) + "t

�yt�1 = ��+��(1��)(Xt�1+�Xt�2+ :::)+�"t�1

Subtracting �yt�1 from yt gives

yt = �(1� �) + �(1� �)Xt + �yt�1 + "t � �"t�1.

The above equation is not quite in the standard frame-
work, because ut = "t � �"t�1 is correlated with yt�1.
Note that a lagged dependent variable with autocorrela-
tion generally results in the LS estimators being inconsis-
tent. (Why?)
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When are adaptive expectations rational?

WhenX is generated by Xt = Xt�1+�t���t�1 where
�t are independent and identically distributed i.e., Xt is
IMA(1). (Prove this by substitution.)

Other distributed lags:

1. Polynomial Distributed Lags (Almon)

In this case, coe¢ cients (i.e., �i0s) are given by a poly-
nomial in the lag length. For example,

�i + a0 + a0i+ a2i
2.

This is used for �nite-length lag distribution. This im-
poses linear restrictions.
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2. Smoothness Priors (Shiller)

The coe¢ cients are given by

�i = a0a0i+ a2i
2 + �i

3. Rational Distributed Lags (Jorgenson)

In this case, D(L) = B(L)=A(L) where D(L) is of
in�nite order (with restrictions), and B(L) and A(L)
are low order polynomials.

Consider the model yt = �+D(L)Xt + "t.

Multiplying this model by A(L) yields

A(L)yt = �
� +B(L)Xt + vt.

Note that stability requires that the roots of A(L) be
greater than 1 in absolute value.
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Example: Suppose A(L) = 1 + �L.

A(L) = 0 ) L = �1=� which is the root of this
polynomial.

Stabiilty implies that 1=� > 1, i.e., � < 1.

Since

yt = �+D(L)Xt + "t = �+ (B(L)=A(L))Xt + "t,

� = ��=A(L) and "t = vt=A(L).

De�nition: The form of the model with no y�s on the
regressor side is referred to as the �transfer function�
form.

The above discussion shows the correspondence between
models with lagged dependent variables and distributed
lags on independent variables.
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DYNAMICS AND AUTOCORRELATION

Consider the model yt = � + �Xt + ut where ut =
�ut�1 + "t(AR(1)).

Transforming the model by subtracting �yt�1 from yt
yields

yt = �(1� �) + �yt�1 + �Xt � ��Xt�1 + "t

= 0 + 1yt�1 + 2Xt + 3Xt�1 + "t.

This is a dynamic linear regression with independent and
identically distributed errors.

However, note the nonlinear restriction 02 + 3 = 0.

Thus simple regression with AR(1) errors is a restricted
version of the dynamic model. This nonlinear restriction
can be tested.
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The Durbin-Watson statistic can indicate dynamic mis-
speci�cation (apparent autocorrelation). Of course, the
D-W is inappropriate in the dynamic model - the h-
statistic should be used to detect further autocorrelation.
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ESTIMATION OF DYNAMIC MODELS

Consider the model y = Z�+" where Z includes lagged
y and X.

The LS esimator in this case is
�̂ = (Z0Z)�1Z0y = � + (Z0Z)�1Z0".

Assume that plim(Z0Z=T ) = Q where Q is a positive
de�nite matrix and plim(Z0"=T ) = 0. Then �̂ is con-
sistent.

If also
Z0"p
T

D! N(0; �2Q),

then
p
T (�̂ � �) D! N(0; �2Q�1):
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However, in dynamic models with autocorrelation,

plim(Z0"=T ) 6= 0: (Why?)

In this case, an easy way to get consistent estimates is
to use the method of instrumental variables.

Instrumental Variables (IV ):

To get consistent estimates, instead of usign matrix Z,
use a T�K matrix of instrumentsW with p lim(W 0u=T ) =
0 where u is the vector of errors. The instrumental vari-
ables estimator �̂IV is (W 0Z)�1W 0y where W is the
matrix of instruments.

To obtain this, multiply y = Z� + u by W and write
W 0y =W 0Z� +W 0u.

Note that W 0Z is K � K. If it is nonsingular, then
�̂IV = (W

0Z)�1W 0y.
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Proposition: If plim(W 0Z=T ) = Q where Q is a posi-
tive de�nite matrix and plim(W 0u=T ) = 0, then �̂IV is
consistent.

Proof :

Note that �̂IV = (W
0Z)�1W 0y = � + (W 0Z)�1W 0u.

Thus �̂IV = � + (W
0Z=T )�1(w0u=T ). So,

plim(�̂IV � �) = Q�1plim(W 0u=T ) = 0.

Hence �̂IV is consistent. �

Proposition: The asymptotic variance of �̂IV is

(W 0Z)�1W 0VW (W 0Z)�1;

where V = V (u).

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 14. Copyright (c) N. M. Kiefer.



14

Notes:

1. If Z is nonstochastic (i.e., Z = X), then X is a
good choice of instruments.

2. If Z = [Y�1X] where Y�1 represents the vector
of lagged y values, then use X and more columns as
instruments. For example, use in W all X variables un-
correlated with errors and additional variables as needed
so thatW has rank K. Usually, additional lagged values
of X are used. Predicted values of Y�1 based on lagged
X and other variables can also be used.

3. �̂IV is not usually e¢ cient. The ML estimator is
more di¢ cult to calculate but it is better.

4. The ML estimator requires speci�cation of the form
of autocorrelation. IV estimation gives consistent esti-
mates without speci�cation of the form of autocorrela-
tion.
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