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LECTURE 13: TIME SERIES I

AUTOCORRELATION :

Consider y = X� + u where y is T � 1, X is T �K,
� is K � 1 and u is T � 1.

We are using T and not N for sample size to emphasize
that this is a time series.

The natural order of observations in a time series sug-
gest possible approaches to parametrizing the covariance
matrix parsimoniously.

First order autoregression: AR(1)

This is the case where ut = �ut�1 + "t where "t are
independent and identically distributed with

E"t = 0 and V ("t) = �2.
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First order moving average: MA(1)

This is the case where ut = "t � �"t�1.

Random walk: (AR(1) with p = 1)

This is the case where ut � ut�1 = "t.

Integrated moving average: IMA(1)

This is the case where ut � ut�1 = "t � �"t�1.

Autoregressive moving average (1,1): ARMA(1; 1)

ut � �ut�1 = "t � �"t�1
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Autoregressive of order p: AR(p)

ut = �1ut�1 + �2ut�2 + :::+ �put�p + "t.

Moving average of order p: MA(p)

ut = "t �
pX
i=1

�i"t�i

Proposition: A �rst order autoregressive (AR(1)) process
is an in�nite order moving average(MA(1)) process.

Proof:

ut = �(�ut�2+"t�1)+"t = ("t+�"t�1+�2"t�2+:::).

Thus

ut =
P1
r=0 �

r"t�r
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AR(1) arises frequently in economic time series.

Let ut = �ut�1 + "t which is an AR(1) process.

Note that Eut = 0 and V (ut) = �2(1+�2+�4+:::) =
�2=(1� �2).

Also note that

cov(utut�1) = ��2 + �3�2 + �5�2 + :::

= ��2=(1� �2) = �V (ut),

and similarly

cov(utut�s) = �sV (ut) = �s�2=(1� �2). Thus

Euu0 = �2

1��2

266664
1 � �2 : : : �T�1

� 1 � : : : �T�2

: : : : : : :

�T�1 �T�2 �T�3 : : : 1

377775
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This is a symmetric matrix.

This is a variance-covariance matrix characterized by two
parameters which �ts into the GLS framework.

Consider the LS estimator �̂ under the assumption of an
AR(1) process for the ut�s:

1. What are the properties of �̂?

2. What is the associated variance estimate?

In the LS method, V (�̂) is estimated by s2(X 0X)�1. Is
this correct in the AR case?
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Under the assumption of an AR(1) error process, V (�̂)
should be (�2=1� �2))(X 0X)�1X 0V X(X 0X)�1.

with V representing the variance-covariance matrix above.

If X variables are trending up and � > 0 (usually t 0:8

or 0:9), the s2 will probably underestimate �2=(1� �2)
and (X 0X)�1X 0V X(X 0X)�1.

Point: We can seriously understate standard errors if we
ignore autocorrelation.
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"SPURIOUS REGRESSIONS IN ECONOMETRICS":

(Granger-Newbold)

(Journal of Econometrics, 1974)

Consider a simple regression model.

Let yt = �+ �xt + "t.

Suppose the true process with " and "�independent are

yt = �yt�1 + "t and

xt = �
�xt�1 + "�t

The data are really independent AR(1) processes.
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Suppose we regress y on x. Then if T = 20 and � =
�� = 0:9, then ER2 = 0:47 and F t 18.

This falsely indicated a signi�cant contribution of x.

Sampling experiments for yt = �+�xt+"t with T = 50
and y; x independent random walks were carried out, and
t-statistics on � in 100 trials were calculated.

If these statistics were actually distributed as t, we would
expect t to be less than 2, 95 times. We actually observe
t to be less than 2, 23 times, and t greater that 2, 77
times. There is spurious signi�cance. The situation only
becomes worse with more regressors.

Point: High R2 does not "balance out" the e¤ects of
autocorrelation. Good time-series �ts are not to be be-
lieved without diagnostic tests.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 13. Copyright (c) N. M. Kiefer.



9

TESTING FOR AUTOCORRELATION:

The important thing is to look at the residuals.

De�nition: The Durbin-Watson statistic ("d" or DW") is

d =
PT
t=2(et�et�1)2PT

t=1 e
2
t

= e0Ae
e0e

where

A =

0BBB@
1 �1 0 :
�1 2 �1 :
0 �1 2 :
: : : :

1CCCA
Which is a T � T symmetric matrix
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In other words, d is the sum of squared successive di¤er-
ences divided by sum of squares.

The Durbin-Watson statistic is probably the most com-
monly used test for autocorrelation, although the Durbin
h-statistic is appropriate in wider circumstances and should
usually be calculated as well.

Distribution of d:

Note: We want to calculate the distribution under the
hypothesis that � = 0, i.e. no autocorrelation. Then a
surprisingly large value indicated autocorrelation.
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Intuition:

E("t � "t�1)2 = �2 + �2 � 2cov("t; "t�1) = 2�2

Then, why is Ed 6= 2?

1. There is one less term in the numerator

2. The use if e rather that " makes the distribution de-
pends on x.

Note: d is a ratio of quadric forms in normals.

Why isn�t it distributed a F?
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Durbin-Watson test:

Durbin and Watson give bounds dL and dU which are
both less than 2.

If d > dL, then reject the null hypothesis of no autocor-
relation. This indicated positive autocorrelation.

If dL < d < dU , then the result is ambiguous.

If the statistic d calculated from the sample is greater
than 2, the indication is negative autocorrelation. Then
use the bounds of dL and dU , and check against 4� d.

If 4� d < dL, then reject the null.

If 4� d > dU , then do not reject.
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Interpretation of the Durbin-Watson test:

1. This is a test for general autocorrelation, not just for
AR(1) processes.

2. This test cannot be used when regressors include
lagged values of y, for example,

yt=�+�0yt�1+�1xt+"t.

Other tests are available in this case.
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Other tests:

1. Wallis test: This is used for quarterly data. The test
statistic is

d4 =
Pt
t=5(et�et�4)2PT

t=1 e
2
t

.

2. Durbin�s h test: This is used when there are lagged
y�s. We regress et on et�1, xt and as many lagged
y�s as are included in the regression. Then test (with
"t") the coe¢ cient of et�1. A signi�cant coe¢ cient on
et�1 indicates presence of autocorrelation. Note that
this test is quite easy to do and it "works" when the
Durbin-Watson test doesn�t. This is a good test to use.
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ESTIMATION WITH AN AR(1) ERROR
PROCESS:

Consider y = X� + u where ut = �ut�1 + "t with
E(u) = 0 and

Euu0 = �2

1��2

266664
1 � �2 ::: �T�1

� 1 � ::: �T�2

: : : ::: :

�T�1 �T�2 �T�3 ::: 1

377775 = �2

1��
.
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Thus


�1 = 1
1��2

26666664
1 �� :: : 0
�� 1 + �2 :: : ��
: : :: : :

�� : :: 1 + �2 ��
0 : :: �� 1

37777775 = P
0P

which is a "band" matrix. So,

P = 1p
1��2

26666664

q
1� �2 0 :: : :

�� 1 :: : :
0 �� :: : :
: : :: : :
: : :: �� 1

37777775.
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Matrix P will be used to transform the model.

The �rst transformed observation is

q
1� �2y1 =

PK
h=1 �hxh;1

q
1� �2 + u1

q
1� �2,

and all others are

yt� �yt�1 =
PK
h=1 �h(xh;t� �xh;t�1) + ut� �ut�1.

Note that xh;t denotes the t
th observation on the hth

explanatory variable.

The GLS transformation puts the model back in standard
form as expected.
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Notes:

1. Given �, the estimation is by the LS method. We
write the sum of squares as S(�). Then minimization
with respect to � is a simple numerical problem.

2. ML can also be reduced to a one-dimensional maxi-
mization problem which is straightforward.

3. Early two-step methods which often dropped the �rst
observation are less satisfactory. Never use the Cochrane-
Orcutt (CORC) procedure.

4. The extension to higher-order AR or MA processes is
straightforward.
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