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Lecture 11: Generalized Least Squares (GLS)

In this lecture, we will consider the model y = X� + "

retaining the assumption Ey = X�.

However, we no longer have the assumption V (y) =
V (") = �2I. Instead we add the assumption V (y) =
V where V is positive de�nite. Sometimes we take
V = �2
 with tr
 = N .

As we know, �̂ = (X 0X)�1X 0y. What is E�̂?

Note that V (�̂) = (X 0X)�1XVX(X 0X)�1 in this
case.

Is �̂ BLUE? Does �̂ minimize e0e?
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The basic idea behind GLS is to transform the observation
matrix [y X] so that the variance in the transformed
model is I (or �2I).

Since V is positive de�nite, V �1 is positive de�nite too.
Therefore, there exists a nonsingular matrix P such that
V �1 = P 0P .

Transforming the model y = X� + " by P yields Py =
PX� + P".

Note that EP" = PE" = 0 and V (P") = PE""0P 0 =
PV P 0 � P (P 0P )�1P 0 = I. (We could have done this
with V = �2
 and imposed tr
 = N if useful.) That
is, the transformed model Py = PX� + P" satis�es
the conditions under which we developed Least Squares
estimators.
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Thus, the LS estimator is BLUE in the transformed model.
The LS estimator for � in the model Py = PX� + P"

is referred to as the GLS estimator for � in the model
y = X� + ".

Proposition: The LGS estimator for � is

�̂G = (X
0V �1X)�1X 0V �1y:

Proof : Apply LS to the transformed model. Thus,

�̂G = (X 0P 0PX)�1X 0P 0Py
= (X 0V �1X)�1X 0V �1y:

�

Proposition: V (�̂G) = (X
0V �1X)�1.

Proof : Note that �̂G � � = (X 0V �1X)�1X 0V �1".
Thus,

V (�̂G) = E(X 0V �1X)�1X 0V �1""0V �1X(X 0V �1X)�1

= (X 0V �1X)�1X 0V �1V V �1X(X 0V �1X)�1

= (X 0V �1X)�1:
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Aitken�s Theorem: The GLS estimator is BLUE. (This
really follows from the Gauss-Markov Theorem, but let�s
give a direct proof.)

Proof : Let b be an alternative linear unbiased estimator
such that b = [(X 0V �1X)�1X 0V �1 +A]y.

Unbiasedness implies that AX = 0.

V (b) = [(X 0V �1X)�1X 0V �1 +A]V

�[(X 0V �1X)�1X 0V �1 +A0]
= (X 0V �1X)�1 +AV A0 + (X 0V �1X)�1X 0A0

+AX(X 0V �1X)�1

The last two terms are zero. (Why?)

The second term is positive semi-de�nite, so A = 0 is
best. �

What does GLS minimize?
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Recall that (y �Xb)0(y �Xb) is minimized by b = �̂

(i.e., (y �Xb) is minimized in length by b = �̂).

Consider P (y �Xb). The length of this vector is

(y �Xb)0P 0P (y �Xb) = (y �Xb)0V �1(y �Xb)

Thus, GLS minimizes P (y �Xb) in length.

Let ~e = (y �X�̂G). Note that satis�es

X 0V �1(y �X�̂G) = X 0V �1~e = 0:(Why?)

Then

(y �Xb)0V �1(y �Xb) = (y �X�̂G)0V �1(y �X�̂G)
+(b� �̂G)0X 0V �1X(b� �̂G)

Note that X 0~e 6= 0 in general.
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Estimation of �2:

Let V (y) = �2
 where tr 
 = N .

Choose P so P 0P = 
�1. Then the variance in the
transformed model Py = PX� + P" is �2I. Our
standard formula gives s2 = ~e0~e=(N �K) which is the
unbiased estimator for �2.

Now we add the assumption of normality: y �N(X�; �2
).

Consider the log likelihood:

`(��2) = c� N
2
ln�2 � 1

2
ln j
j

� 1

2�2
(y �X�)0
�1(y �X�).

Proposition: The GLS estimator is the ML estimator for
�. (Why?)
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Proposition: �2ML = ~e0~e=N (as expected).

Proposition: �̂G and ~e are independent. (How would
you prove this?)

Testing :

Testing procedures are as in the ordinary model. Re-
sults we have developed under the standard set-up will
be applied to the transformed model.
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When does �̂G = �̂?

1. �̂G = �̂ holds trivially when �
2I = V .

2. �̂ = (X 0X)�1X 0y and

�̂G = (X
0V �1X)�1X 0V �1y

�̂G = �̂

) (X 0X)�1X 0 = (X 0V �1X)�1X 0V �1

) V X = X(X 0V �1X)�1X 0X = XR

(What are the dimensions of these matrices?)

Interpretation: In the case where K = 1, X is an eigen-
vector of V . In general, if the columns of X are each
linear combinations of the same K eigenvectors of V ,
then �̂G = �̂. This is hard to check and would usually
be a bad assumption.
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Example: Equicorrelated case: V (y) = V = I + �110

where 1 is an N -vector of ones.

The LS estimator is the same as the GLS estimator if X
has a column of ones.

Case of unknown 
:

Note that there is no hope of estimating 
 since there
are N(N + 1)=2 parameters and only N observations.
Thus, we usually make some parametric restriction as

 = 
(�) with � a �xed parameter. Then we can
hope to estimate � consistently using squares and cross
products of LS residuals or we could use ML.

Note that it doesn�t make sense to try to consistently
estimate 
 since it grows with sample size.
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Thus, �consistency� refers to the estimate of �.

De�ntion: 
̂ = 
(�̂) is a consistent estimator of 
 if
and only if �̂ is a consistent estimator of �.

Feasible GLS (FGLS) is the estimation method used
when 
 is unknown. FGLS is the same as GLS except
that it uses an estimated 
, say 
̂ = 
(�̂), instead of

.

Proposition: �̂FG = (X
0
̂�1X)�1X 0
̂�1y

Note that �̂FG = �(X 0
̂�1X)�1X 0
̂�1". The fol-
lowing proposition follows easily from this decomposition
of �̂FG.

Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 11. Copyright (c) N. M. Kiefer.



11

Proposition: The su¢ cient conditions for �̂FG to be
consistent are

p lim
X 0
̂�1X

N
= Q

where Q is positive de�nite and �nite, and

p lim
X 0
̂�1"
N

= 0.

It takes a little more to get a distribution theory. From
our discussion of �̂G, it easily follows that

p
N(�̂G � �)! N

0@0; �2 X 0
�1X
N

!�11A
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What about the distribution of �̂FG when 
 is unknown?

Proposition: Su¢ cient conditions for �̂FG and �̂G to
have the same asymptotic distribution are that

p lim
X 0(
̂�1 � 
�1)X

N
= 0

p lim
X 0(
̂�1 � 
�1)ep

N
= 0:

Proof : Note that

p
N(�̂G � �) =

 
X 0
�1X

N

!�1 
X 0
�1"p

N

!
and

p
N(�̂FG � �) =

 
X 0
̂�1X

N

!�1 
X 0
̂�1"p

N

!
.
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Thus

p lim
p
N(�̂G � �̂FG) = 0

if

p lim
X 0
̂�1X

N
= p lim

X 0
�1X
N

and

p lim
X 0
̂�1"p

N
= p lim

X 0
�1"p
N

.

We are done. (Recall that p lim(x � y) = 0 ) the
random variables x and y have the same asymptotic dis-
tribution.)
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Summing up:

Consistency of �̂ implies consistency of the FGLS estima-
tor. A little more is required for the FGLS estimator to
have the same asymptotic distribution as the GLS esti-
mator. These conditions are usually met.
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Small-sample properties of FGLS estimators:

Proposition: Suppose �̂ is an even function of " (i.e.,
�̂(") = �̂(�")). (This holds of �̂ depends on squares and
cross products of residuals.) Suppose " has a symmetric
distribution. Then E�̂FG = � if the mean exists.

Proof : The sampling error

�̂FG � � = (X 0
̂(�̂)�1X)�1X 0
̂(�̂)�1"

has a symmetric distribution around zero since " and �"
give the same value of 
̂. If the mean exists, it is zero.
�

Note that this property is weak. It is easily obtained but
it is not very useful.
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General advice:

-Do note use too many parameters in estimating the
variance-covariance matrix or the increase in sampling
variances will outweigh the decrease in asymptotic vari-
ance.

-Always calculate LS as well as GLS estimators. What
are the data telling you if these di¤er a lot?
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