
1

Lecture 10: Neyman-Pearson Lemma and
Asymptotic Testing

Lesson: Good tests are based on the likelihood ratio.

The proof is easy in the case of simple hypotheses:

H0 : x � p0(x) = f(xj�0)

H1 : x � p1(x) = f(xj�1)

The last equality is provided so this can look like a more
familiar parametric test.
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Neyman-Pearson Lemma

Suppose we have a sample x = (x1; :::; xn) 2 Rn and
we want to choose between H0 and H1. (Note that pi
is the likelihood function.) De�ne a decision function d:
Rn ! f0; 1g such that d(x) = 0 when H0 is accepted
and d(x) = 1 when H1 is accepted. Thus, d de�nes a
partition of the sample space. The following diagrams
illustrate situations where n = 2.
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Let A be the region in which d = 0. Ac is the comple-
ment of A in Rn. Then the error probabilities are

� = P (d = 1jH0) =
R
Ac p0(x)dx

� = P (d = 0jH1) =
R
A p1(x)dx:

Note: � is the size of the test - the probability of an error
of the �rst type, and � is the operating characteristic of
the test - the probability of an error of the second type.
(1� �) is the power of the test.
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You would like to choose a test minimizing both error
probabilities, but there are tradeo¤s. � can be set to
0, its minimum, by choosing d = 0 always; but then
� = 1. This is the only way � can be assured to be
0. Similarly, � = 0 if d = 1, but then � = 1. Now,
� = 1=2 and � = 1=2 can be obtained by �ipping a coin
and ignoring the data. Thus we have 3 points on the
�frontier� available without data.

The �information budget constraint�with no data is the
solid line in the following �gure:
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Good tests using data will get a constraint like the curve
(of course, (0; 1) and (1; 0) are always the endpoints).
(Exercise: Why does this constraint have this shape?)
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This is like an income e¤ect - information gives a better
tradeo¤ between the two types of errors.

De�nition: p0=p1 is the likeihood ratio where pi =
f(xj�i) is the joint distribution of data.

Let A(T ) = fx: p0=p1 > Tg (a set in Rn) and �� =R
Ac p0(x)dx; �

� =
R
A p1(x)dx.

A de�nes a decision rule d = 0 if x 2 A and d = 1 if
x 2 Ac.

Let B be any other region in Rn with error probabilities
� and �. Then:

Neyman-Pearson Lemma:

If � � ��, then � � ��.

What does this say?
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Proof : De�ne IA(x) = 1 if x 2 A and IB(x) = 1 if
x 2 B. Then (IA � IB)(p0(x)� Tp1(x)) � 0.

To check this, look at both cases: If x 2 A, then IA = 1
and p0=p1 > T .... (think about this)

Multiplication yields:

0 � IAp0 � IATp1 � IBp0 + IBTp1.

If this holds for any given x, it certainly holds on the
average. Thus

0 �
R
A p0 � Tp1dx�

R
B p0 � Tp1dx.

Hence (recall de�ntions of �, �, ��, ��),

0 � (1� ��)� T�� � (1� �) + T� = T (� � ��) +
(�� ��).

Thus, if � < ��, � must be > ��, and vice versa. �
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The result says that when designing tests we should look
at the likelihood ratio.

Indi¤erence curves for error probabilities:

Let (�0; �0) and (�1; �1) be error probabilities associ-
ated with two di¤erent tests. Suppose you are indi¤erent
between these tests, then you do not care if the choice is
made with a coin �ip.

But this de�nes another test with error probabilities �2 =
1=2�0+ 1=2�1 and �2 = 1=2�0+ 1=2�1, and you are
indi¤erent between this new test and the others. Con-
tinuing, you derive a linear indi¤erence curve.
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Note that the practice of �xing � (e.g., 0.05) for all sam-
ple sizes () all values of �) corresponds to lexicographic
preferences, which are not continuous and therefore illog-
ical in this setting.

Example: Consider the following composite hypothesis:

H0: � = �0 (null hypothesis)

H1: � 6= �0 (alternative hypothesis)

Here we �nd the ML estimator �̂ and consider the like-
lihood ratio f(xj�0)=f(xj�̂). Basically we are choosing
the "best" value under the alternative hypothesis for the
denominator.
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Exercise: Consider the regression model
y = X1�1 +X2�2 + " where " � N(0; �2).

Is the F -test for �2 = 0 a likelihood ratio test?
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Asymptotic Testing:

In this section, we will study the three tests: Likelihood
Ratio (LR), Wald and Score (Lagrange Multiplier - LM)
tests.

Background: (Asymptotics)

`(�) =
P
ln p(xj�) is the log likelihood function. De�ne

the score function

s(�) =
d`

d�

and

i(�) = �E
"
d2 ln p

d�2

#
= E

"�
d ln p

d�

�2#
:
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By CLT,

1
p
n
s0 � N(0; i0)

where �0 is the true value, s0 = s(�0) and i0 = i(�0).

Testing:

Let �̂ be the ML estimator. Let d0 = �̂� �0 denote the
vector of deviations.

Then, n�1=2s0 = i0d0n
1=2 asymptotically. Note that

this is the same as

n1=2d0 = i
�1
0 s0n

�1=2:

Further, 2[`(�̂)� `(�0)] = nd00i0d0 asymptotically. (To
get this result, expand `(�̂) around �0 and take proba-
bility limits.)
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Consider the hypothesis:

H0: � = �0

H1: � 6= �0

Note that the restriction is � = �0.

Likelihood Ratio Test:

Likelihood ratio:

LR = p(xj�0)=max� p(xj�) = p(xj�0)=p(xj�̂)

The test statistic is �2 lnLR = 2[`(�̂) � `(�0)] and
it is distributed as �2 (with degrees of freedom equal
to the number of retsrictions imposed) under the null
hypothesis.
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Wald Test:

The test statistic is nd00i(�̂)d0, and it is distributed as
�2 under the null hypothesis.

Score Test:

The test statistic is n�1s00i
�1
0 s0, and it is distributed as

�2 under the null hypothesis.

Note: p lim i(�̂) = i(�0) = i0 when the restriction is
true and real that p lim(nd00i0d0 � n�1s00i

�1
0 s0) = 0

since asymptotically

n1=2d0 = i
�1
0 s0n

�1=2
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So, the tests are asymptotically equivalent. Note that
the Wald and LM tests are appealing because of their as-
ymptotic equivalence to the LR test, which is an optimal
test in the Neyman-Pearson sense.

Discussion:

-What are the computational requirements for these tests?

-Which is best?
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Geometry

For illustrative purposes, � is one-dimensional.

Likelihood Ratio test:

Here, we look at the change in the log likelihood function
`(�) evaluated at �̂ and �0, `(�̂) and `(�0). If the
di¤erence between is too large, we reject H0.
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l(θ)

θθ* θ0

*

* LR test is based on this difference
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Wald test:

Here, we look at the deviation in parameter space.

The di¤erence between �̂ and �0 implies a larger di¤er-
ence between `(�̂) and `(�0) for the more curved log
likelihood function. Evidence against the hypothesized
value �0 depends on the curvature of the log likelihood
function measured by ni(�̂).

Hence the test statistic is n(�̂ � �0)2i(�̂).
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l(θ)

θθ* θ0

* Wald test is based on this difference

*
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Score test:

Here, we look at the slope of the log likelihood function
at the hypothesized value of �0.

Since two log likelihood functions can have equal values
of s0 with di¤erent distances between �̂ and �0, s0 must
be weighed by the change in slope (i.e. curvature). A
bigger change in slope implies less evidence against the
hypothesized value �0.

Hence the test statistic n�1s20i
�1
0 .
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l(θ)

θθ* θ0

* Score(LM) test is based on this difference

*
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Why is the score test also called the Lagrange Multipler
test?

The log likelihood function is maximzied subject to the
restriction � = �0:

max
�
`(�)� �(� � �0):

This gives

�̂ = �0 and � = s(�0) =
@`

@�0
:
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l(θ)

θ
θ* θ0

* 2 likelihood functions and a test of = 0
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