
Lecture 20: GMM

� Key: Set sample moments equal to theoretical mo-
ments and solve parameters.

� Generalized moments: Expectations of functions

Eg.

E(y � �) = 0

set
1

n

P
(yi � �̂) = 0, �̂ = �y



Regression

E(y �X�) = 0

set 1n
P
(yi �Xi�) = 0?

� Too many solutions

� Suppose we group into K groups

� Solve simultaneously

� Illustrates arbitrariness of choice of moment condi-
tions

� A better moment condition:

E(X 0(y �X�)) = 0



solve

X 0(y �X�̂) = 0 for �̂ = (X 0X)�1X 0y

a GMM estimator!

Often we have overidentifying restrictions

E(W 0(y �X�)) = 0
W : n� p, p > k

Then W 0(y � X�̂) = 0 is p linear equations in K un-
knonws.

Write W 0y =W 0X� + " and do GLS.



If

V (y) = �2I, V (") = �2W 0W .

Then

�̂GLS = �̂GMM = (X 0W (W"W )�1W 0X)�1X 0W (W 0W )�1W 0y

Which is the solution to

min(y �X�̂)0W (W 0W )�1W 0(y �X�̂).

With V (y) = V :

�̂ = (X 0W (W 0VW )�1W 0X)�1X 0W (W 0VW )�1W 0y:

Solution to

min(y � x�̂)0W (W 0VW )�1W 0(y �X�̂)



Distribution Theory

� Assume W 0"p
n
! N(0;W 0VW ) plausible?

Then

�̂ � �+(X 0W (W 0VW )�1X 0W )�1X 0W (W 0VW )�1W 0"

so
p
n(�̂ � �)~N(0; (X 0W (W 0VW )�1W 0X)�1)

The trick is choosing the moments (or instruments)



� More cannot hurt.

Asymptotically we have:

E(W 0(y �X�)) = 0

Instead use:

E(A0W 0(y �X�)) = 0
A : m� p, m < p

(Fewer conditions)

Then

V (�A) = [X 0WA(A0W 0VWA)�1A0W 0X]�1

V (�̂)�1 � V (�A)�1 = X 0W [(W 0VW )�1 �A(A0W 0VWA)�1A0]W 0X

Letting

CC0 = (W 0VW )�1

V (�̂)�1 � V (�A)�1 = X 0WC[I � C�1A(A0C0�1C�1A)�1A0C0�1]C0W 0X



p.s.d., so

V (�A) � V (�̂)



� Note that more may not help if conditions are chosen
right.

(W 0 = X 0 for OLS)

� Look more closely at the case V (y) = I: If we let
W = [X Z]

�̂ = (X 0W (W 0W )�1W 0X)�1X 0W (W 0W )�1W 0y = (X 0X)�1X 0y

(after a little work)

� First factor is (X 0X)�1

� Note W (W 0W )�1W 0X is the matrix of predicted
values from the regression of X on W (namely, X
itself)



Nonlinear Models

E(W 0f(�)) = 0, W : n� p, f(�): n� 1, �: k � 1

Same principle as linear:

Let F = f�: n� k and E(ff 0) = V

Solving by nonlinear GLS minimizes

f 0W (W 0VW )�1W 0f

and
p
n(�̂ � �)~N(0; n(F 0W (W 0VW )�1W 0F )�1)

choice of instruments?

Try W = V �1F

Then V (�̂) = (F 0V �1F (F 0V �1V V �1F )�1F 0V �1F )�1 =
(F 0V �1F )�1



� Smallest in this class (why?) (note there are only k
of these)



Generalization

� We have only considered covariances so far.

Consider G: N � p where we let each column represent
di¤erent functions of data. We have N observations on
each function, sothe moment conditions become

E(fti(yt; �)) = 0, i = 1; :::; k t = 1; :::; N:

Where earlier we had speci�ed

fit(y; �) = witfit

� Now GLS can be applied:

Resulting in min 10GAG01



That is, the moment conditions are 10G = 0 and A is a
p.d. weighting matrix.

For e¢ ciency, A should be equal to (well, proportional
to) V (10G)�1 (this is E(FF 0) in earlier notation).

To develop intuition for this, consider the linear case
where G has elements

fti = wti(yt � xt�)

And the 10 just sums over observations, so V (10G) is just
(W 0W ):

Note 10G is taking the place of (y �X�)0W:



Asymptotic Distribution of GMM

Write Q = 10GAG01, the function to be minimized to
calculate the GMM estimator.

Taking the Taylor expansion of the �rst order condition
Q� = 0

0 = Q�(�) +Q��(�
� � �)

and just as in the ML case, we solve for the vector of
estimation errors as

(�� � �) = �(Q��)�1Q�

and apply a LLN to the second derivative matrix and a
CLT to the �scores.�



The notation can get cumbersome here, but let gij =
the derivative of the ith column of 10G with respect to
�j, and let g = fgijg be the associated matrix. Then

V (n1=2(�� � �)) = (g0Ag)�1g0AEFF 0Ag(g0Ag)�1:

This comes from evaluating the derivatives, bringing in
the scaling factors in n and generally simplifying. The
result should look familiar.

Note that when A = EFF 0, the formula simpli�es to

V (n1=2(�� � �)) = (g0Ag)�1:

As in the usual GLS case!



Questions: How many moments to use? Note the FOC
only use k.... Nice analogy with 2SLS - with lots of IV,
still with 2SLS, we reduce to the �just identi�ed�case by
using the optimal linear combination of instruments.

Discussion?

In fact k moments are su¢ cient for e¢ ciency if there are
k parameters. What are the k moments?

The real use for GMM is when the LF is too complicated
or unknown (better, not plausibly known).



Conditional GMM

Basically generates more moment conditions. When we
take X 0(y�X�) = 0, we are imposing that the error is
uncorrelated with X.

But the property may be stronger, e.g. that E((y �
X�)jX) = 0. This implies that EX 0(y�X�) = 0 but
also that any other function of X is uncorrelated with
(y � X�). This comes up a lot in RE modeling and
provides a source of lots of moment conditions.

Note tradeo¤ between introduction of noise and gains
from using more moments.



Conclusion

� GMM requires fewer assumptions than ML

� Can be somewhat arbitrary

� Can be very ine¢ cient relative to ML


