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Abstract

The simultaneous equations model (SEM) is the classical econometric set-

ting for the study of identi�cation and estimation of economic relationships.

Virtually all new approaches to inference in econometrics are routinely tested

and demonstrated using the SEM. In this paper we analyze the SEM in a

framework which clearly illustrates the key issues without becoming mired in

coordinate-speci�c inessential details.

1 Economies, Data and Identi�cation

Economies are classically speci�ed by the system of equations

�ary
r + 
akX

k + u = 0, a = 1; :::; G

where f!g = f�; 
g is a G � (G + K) matrix of coe¢ cients, repeated indices in
multiplicative expressions indicate summation over the range of the index and fug
is G � 1 gaussian random vector. The space of economies is thus 
, the space of

G� (G+K) matrices. In this section we are concerned solely with speci�cation and
identi�cation of economic models, so we abstract from considerations of sample size.

We now turn our attention to the space of observables. The sample space itself

is not quite what is needed - instead we ask �what can be learned?� The answer, of

course, is the reduced form f�g 2 	 = F (G;K), G-frames in RK where f�g is the
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matrix of coe¢ cients in the reduced-form regressions

ya = �arX
r + "a, a = 1; :::; G

The data gives � and the identi�cation problem is basically the sorting out of � and


 from �.

Consider now the observation window S: 
! 	, mapping economies to observ-

ables. The �identi�cation problem�arises since dim
 > dim	 in general. The in-

verse map S�1: 	! 
 maps observations to �observationally equivalent economies�

in 
. Generally, there is only one observable associated with each economy (i.e.,

multiple equilibria are ruled out by the linear structure). Then the collection of sets

fS�1(�): � 2 	g

is a foliation of 
. De�ne equivalence relation ~ by ! ~ !0 if !, !0 2 S�1(�).

The situation is that the data determine the leaf of the foliation. The economist

is reduced to theory, intuition, and the like to select a particular economy from

the observationally equivalent set along the leaf. Typically this is accomplished by

restricting attention to subsets 
0 of 
. We say that 
0 is an �economic model�.

De�nition 1 The model 
0 is weakly identi�ed if there exists an injection g: 
0 !

=~. 
0 is strongly identi�ed if g can be chosen to be continuous.

The model is just-identi�ed if g can be chosen to be onto.

Let us turn now to the classical �rank and order�conditions. The order condi-

tion is

OC: dim
0 � dim	
and the rank condition

RC: De�ne S 0 as the restriction of S to 
0. The rank condition is S 0: 
0 ! 	 is

an injection.

Classically, the order condition is considered necessary and the rank condition su¢ -

cient for identi�cation. Precisely:
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Theorem 2 OC is necessary for strong identi�ction.

Proof: There is no 1 � 1 continuous map from a higher to a lower dimension

manifold (Brouwer theorem on invariance of domain).

OC is not necessary for weak identi�cation.

Theorem 3 RC is su¢ cient for identi�cation.

Proof: g = S1 � S 0 is the required injection.
These concepts are illustrated in Figure 1 for the case of G = K = 1. Here

the equivalance classes S�1(�) are lines through the origin (but not including the

origin). The Grassman manifold 
=~ is simply the real projective space P 1(R).

Restricting attention to the set 
0 gives a just identi�ed model. The point 
� is an

overidenti�ed model.
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We close this section with 2 examples then turn our attention in II to the problem

of estimation.

(no examples yet)

Example 1: Klein I

Example 2:

2 Estimation and E¢ ciency

For any given sample, say of size N , the data can be su¢ ciently represented by the

multivariate regression coe¢ cient �̂N . To study the estimation problem we identify

�̂ with points � in 	 and consider the map from � to S(
0), the image of the model

space in the space of data. An estimator is a map E 0: 	! 
0 from data to models.

Under the assumption that the model 
0 is identi�ed, we can restrict attention to

the map e: 	! S(
0) and carry out the complete analysis in the manifold 	.

Associated with a point � in 	 is the tangent space T�, a vector space with

dimension GK. We write the basis vectors as f@ag and work with the Fisher
information metric given by

Iab = E@a`@b`

where ` is the loglikelihood function `(�jY;X) for the reduced form parameters. Note
that S(
0) is a submanifold of 	 which can be parametrized in local coordinates by

! = (�; 
). The tangent space T! is a subspace of the space T�(!) where �(!) = S(!)

is a point on S(
0) in 	. This tangent space has basis f@rg. Clearly we have

@r = bar@a and the metric on S(

0), Irs = barb

b
sIab.

With any estimator e and point ! we can associate the submanifold

A! = fe�1(!) = � 2 	je(�) = !g

the datasets � mapping into the estimate ! via the estimator e. If A! is a partition

of 	, the set fA!: ! 2 
0g is a foliation; for smooth estimators the A! are at least
a local foliation. This is a reasonable requirement so we assume e is C1(	; S(
0)).

We call the family A! an ancillary family. Denote points in A! by a, so (!; a) is
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an alternative local coordinate system for 	. The tangent space to the submanifold

A! is T!(A) spanned by the vectors f@vg. Clearly, @v = bav@a. The metric (!; a)

is Irs as already given; Ivw = bavb
b
wIab and Irv = barb

b
vIab. This last term given

the angle between the tangent spaces T!(A) and T!. We are now in a position

to consider evaluation of the e¢ ciency of estimators. Thedata � in general are

normally distributed (exactly under our assumptions, approximately more widely).

It can be shown by expansion of the distribution of !̂ = e(�) that the variance ofp
N(!̂�!) for consistent !̂ is Irs = (Irs� Irv� IsIvw)�1 plus terms in higher powers

of N�1, where the Ivw are the terms in the matrix inverse fIvwg�1. Thus a consistent
estimator is �rst-order e¢ cient i¤ the ancillary family is orthogonal to T! at !̂. As

usual the MLE is e¢ cient. Thus � can be mapped into (!̂; a) with a an approximate

(�rst-order) ancillary. These concepts are illustrated in Figure 2.

To see this more closely let � = (!; a) and index � by f��g, etc. It involves no

loss of generality to measure a so that points on S(
0) are (!; 0). The Edgeworth

expansion for
p
N(�̂ � �0) (derived from the distribution of �) is

p(�̂) = N(�0; I��)

�
1 +

1
6
p
N
���
h

��
 + 0(N�1)

�
(1)

where h��
 are third-order tensorial Hermite polynomials

h��
 = �����
 � I���
 � I�
�� � I�
��

and ���
 = 3 � �(�1=3)��
 ; ���
 relates the basis vectors in di¤erent tangent spaces

thus controlling for nonnormality in the asymptotic distributions. Of course, we are

primarily interested in the marginal distribution of the estimator
p
N(!̂�!0). This

has variance Irs given above to �rst-order. For a �rst-order e¢ cient estimator, such

as the MLE, we may exploit the orthogonality of the ancillary family to show that

the second-order expansion can be obtained in the same form as (1.1) with subscripts

rst rather than ��
.
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3 Testing

Typically we are interested in inspecting whether the economy theory 
0 at hand

may be rejected. In classical terms this amounts to testing the overidentifying

restrictions. If dimS(
0) < dim	 we may select an economy 
00 � 
 that sat-

is�es exact strong identi�cation. We look for rejection of the reduction from 
00

to 
0. A test T is given by a rejection space R � 	 such that the hypothesis

H0: ! 2 
0 is rejected i¤ � 2 R. The power of T as ! is perturbed to order

N�1=2 away from 
0 may be expanded in terms of increasing order in N�1=2, and

T is �rst-order uniformly e¢ cient if the leading term (weakly) dominates that of

any other test at the same level. The test T is �rst-order uniformly e¢ cient i¤

the ancillary family is asymptotically orthogonal, in particular the likelihood ratio

test LR = sup!2
0 L(S(!);�)L(�; �) uniformly e¢ cient. Here L(S(!); �) indicates
the dependence of the likelihood function L on data �. In applications, when N is

�nite, the overidentifying restrictions are rejected if T = �2 logLR=b is critical in
a �2(dim
00 � dim
0) table, since Bartlett adjustments b leaves the �2-distribution
for T valid to order N�3=2 (as opposed to the usual rate N�1).
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