Generalized Method of Moments

1. Population moment condition

E[f(00,2)] =0

where z; is an (r x 1) vector of observable variables, 6, € © is a (k x 1)
vector of true value of parameters and f : R¥ x R” — RY vector valued
function.

2. Sample analog
9(0,2r) = = Z £(0,2)

where Zr = (2, 2p_y,- -+, 2}) . A proper version of law of large numbers
ensures that

plim f(0,z)=FE|[f(0,z)]
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3. Traditional method of moments estimator; Suppose that ¢ = k, i.e., we have
k moment conditions for & unknown parameters. Then, we can find 6 such

that .
0 (0.2r) = 531 (0.2) =0 ()

We expect  to have good statistical properties such as consistency and
asymptotic normality. Good news, under some conditions, it is indeed the
case that

929, and\/f@—e()) <4 N(0,V)

4. Generalized method of moments estimator; What if ¢ > k&7 We have more
equations than unknowns. There does not exist any solution which satisfies
(*). A quick and easy solution is to discard (¢ — k) equations - moment
conditions- and apply the method of moments technique. Then, which to
discard? The answer should be arbitrary. Moreover, the moment condi-
tions discarded do include valuable information on the parameter. The
generalized method of moments technique uses all ¢ moment conditions by



weighting them. Suppose that we have a sequence of (¢ x ¢) positive semi
definite matrix W converging to a positive definite matrix Wy. Then, GMM
estimator is defined as

EGMM = arg mein JVT (9, Zr) = arg mein [g (0, ZT)]/ Wrlg (0, Z7)]

1 & 1
= argmein [? Zf (0, z) T Zf (97215)]
t=1 t=1

Since Wr is positive semi definite, J (0, Zr) > 0. The minimization problem
finds the solution which makes the value of the objective function J (6, Z7)
as near to zero as possible.
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Wr

. Under some regularity conditions,

7y p
QGMM - 90

T
VTq (0o, Zr) = % ;f(%,zt) 4 N(0I)
VT (@GMM - 90) <4 N(0,V)
where
I = plim% = plim%if (0o, 2¢)
Vo= WD) [D'WoQWI] [I'Wol] !
with

Q= lim > E([f (60, 2] [f (00, )]
. Optimal weighting matrix; we can show that the optimal weighting matrix
which minimizes the asymptotic variance of the estimator is given by

Wy =Q*

Then,
VT (Derms — 00) 4 N (0, [r'07'1] )



7. How to actually compute the GMM estimator;

1. Construct the sample analog g (6, Zr) of the population moments E [f (0, z;)] .

2. Set Wy = I and construct the objective function J* (9) = [g (6, Z7)]' [g (8, Zr)] .
Find O
Qe = arg m@m J(9)

3. Calculate
0@ = +Zw (h,1) [A2>+A2>’]
h=1

where

8 =3 3 1 (0] [ (B )]

and w (h, ) is a kernel for weighs. For example, Newey-West (Bartlett)

suggested w (h,l) = [1 — l+_1] The number of lags included in the

estimation of Q@ should increase at a proper rate, say O (T 5) ,as the

sample size T grows in order to ensure the consistency of 0o

4. Construct next step objective function
7 (0) = [ 0. 20) [2] 190, 2)

~(1
and find the minimum with H(GJ)V[M as the starting value of iteration.
Define

2
eé;\/[M = arg mln g (0)

5. Continue the previous two steps until convergence.
6. Asymptotic variance can be calculated as
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8. Example I ; OLS estimator with i.i.d. error

& = yt—ﬂliﬂt

E(e) = 0, E(c]) =0*,E(e4es) =0t #s
Then,
E [f (9[), Zt)] = O :>E [l't (yt — ﬂgl't)] = 0
Therefore,
T T
9 ZT Z 9 Zt Z Ty yt ﬁmt [a:t (Z/t —5/%)] =0

We have &k moment conditions in k& unknown parameters.

9. Example IT; IV
E[f (00,2)] = 0 =E [w; (y: — Bopze)] = 0

In case of i.i.d.,

T

%Z e (- mt)]]

t=1

1Zwt ﬂiﬁt

In case of heterogeneous and correlated data,

T
Z Wy Z/t 53715
t:l

/

mln J =

T
Zwt Yt — ﬁ%]

10. Example III; ML




11. Example IV; intertemporal optimization

u'(cr) = BE[(L+ rep) v (ca) | Xi]
where X, = (}, z}_y2}_,,- - ) . Consider
¢
1=y

u(e) = v>0and vy #1
Then,
¢, =BE [(14 re) ey | Xi

Ct41 -
FE 1—5(1+Tt+1)(c—> ’Xt]:()

t

parameter vector; ((,7), data set (¢, 7).



