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Jensen�s Inequality : Suppose X is a random variable with E (X ) = �, and
f is a convex function. Then

E (f (X )) > f (E (X )).

This inequality will be used to get the consistency of the ML estimator.
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Model and Assumptions

Let p(x j�) be the probability density function of X given the parameter.
Consider a random sample of n observations and let

`(�jx1; x2; :::; xn) =
Pn
i=1 ln p(xi j�)

be the log likelihood function.
Assume �0 is the true value and that d ln p=d� exists in an interval
including �0, furthermore, make the assumptions:

Assumption 1 :
d ln p
d�

;
d2 ln p

d�2
;
d3 ln p

d�3

exist in an interval including �0.
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Model and Assumptions 2

Assumption 2 :

E
�
p0

p
j�
�
= 0;E

�
p00

p
j�
�
= 0;E

�
p02

p
j�
�
> 0

where p0 = dp=d� and p00 = d2p=d�2. These usually hold in the problems
we will see.

Assumption 3 : ����d3 ln pd�3

���� < M(x) where E [M(x)] < K .
This is a technical assumption. It will control the expected error in Taylor
expansions.
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Consistency

We can get the consistency of the ML estimator immediately. We will use
assumptions 1-3 to get the asymptotic normality of a consistent estimator
in general and the ML estimator in particular.

Suppose �� is an estimator for �. We would like to require that the
probability of �� being close to the true value of � (i.e., �0) should increase
as the sample size increases.

De�nition: As estimator �� is said to be consistent for �0 if plim �� = �0.
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Consistency 2

Proposition: If ln p is di¤erentiable, then the ML equation

d`
d�
= 0

(�rst order condition) has a root with probability 1 which is consistent for
�, i.e., the ML estimator for � is consistent.
Proof. Using Jensen�s inequality for concave functions

E ln
�
p(�0 � �)
p(�0)

j�0
�
< 0; E ln

�
p(�0 + �)
p(�0)

j�0
�
< 0

where � is a small number.
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Consistency 3

The inequality is strict unless p does not depend on. To see this, note that

E ln
�
p(�0 + �)
p(�0)

�
< lnE

�
p(�0 + �)
p(�0)

�
= ln

Z
p(�0 + �)dx = ln 1 = 0:

Then noting the de�nition of `(�) and using SLLN,

lim
�
1
n
[`(�0 � �)� `(�0)]

�
< 0

`(�) has a local maximum at �0 in the limit.
Implying that the �rst order condition is satis�ed at �0 in the limit.
Note that we have not shown that the MLE is a global max �this requires
more conditions.
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Asymptotic Normality of Consistent Estimators

Proposition: Let

�E
�
d2 ln p

d�20

�
= E

"�
d ln p
d�0

�2#
= i(�0):

Let �� be the consistent MLE estimator for �. Then

p
n
�
(�� � �0)i(�0)�

1
n
d`
d�0

�
! 0

in probability.
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Asymptotic Normality of Consistent Estimators 2

Proof : From the �rst order condition, we get the following expansion:

0 =
d`
d�0

+ (�� � �0)
d2`

d�20
+
(�� � �0)2

2
d3`

d�30

)
p
n(�� � �) =

� 1p
n
d`
d�0

1
n

h
d 2`
d�20

+ (����0)
2

d 3`
d�30

i
Taking the probability limit we note that the �rst expression in the
denominator converges to �i(�0) and the second expression in the
denominator converges to 0. (Why?)
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Asymptotic Normality of Consistent Estimators 3

Proposition: (Asymptotic Normality)

p
n(�� � �0)! N(0; i(�0)�1)

Proof. Note that
p
n(��� �0)i(�0) has the same asymptotic distribution as

1p
n
d`
d�0

=
p
n
�
1
n
P d ln p

d�0

�
:

We know that

E
�
d ln p
d�0

�
= 0

since Z
p(x j�0)dx = 1)

Z
p0dx = 0 = E

�
d ln p
d�0

�
:
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Asymptotic Normality of Consistent Estimators 4

Note that di¤erentiating
R
p d ln p dx = 0 again implies thatZ

p
�
p0

p

�
d ln p dx +

Z
p d2 ln p dx = 0:

The �rst term is just the variance of d ln p=d�0 and the second expression
is �i(�0). Thus,

V
�
d ln p
d�0

�
= i(�0).

Now we use the Central Limit Theorem for

p
n
�
1
n
P d ln p

d�0

�
with E

�
d ln p
d�0

�
= 0;

V
�
d ln p
d�0

�
= i(�0)
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Asymptotic Normality of Consistent Estimators 5

to obtain p
n(�� � �0)i(�0)! N(0; i(�0)):

Thus (using z � N(0;
P
)) Az � N(0;A

P
A0))

p
n(�� � �0)! N(0; i(�0)�1)

Basic result: Approximate the distribution of

(�� � �0) by N
�
0;
i(�0)�1

n

�
:

Of course, i(�0)�1 is consistently estimated by i(��)�1 under our
assumptions. (Why?)
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Applications

1. This will give the exact distribution in estmating a normal mean.
Check this.

2. Consider a regression model with Ey = X�, Vy = �2I and
y � normal. Check that the asymptotic distribution of �̂ is equal to its
exact distribution.
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Miscellaneous Useful Results

Consistency of continuous functions of ML estimators:

Suppose �̂ is the ML estimator.
Recall that plim �̂ = �0 ) plim g(�̂) = g(�0).

(Choice of parametrization is irrelevant in this regard.)

Note: Do not use the ambiguous term �asymptotically unbiased�
estimators.
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Why do we use ML estimators?

Under our assumptions which provide lots of smoothness, ML estimators
are asymptotically e¢ cient - attaining (asymptotically) the Cramer-Rao
lower bound on variance. (What is the relation to the Gauss-Markov
property?)

Proposition: (Cramer-Rao bound for unbiased estimators.) Let p be the
density function.

Suppose �� is an unbiased estimator of �0. Then

V (��) �
�
V
�
d ln p
d�0

���1
= i(�0)�1:
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Cramer-Rao Bound

Proof : Note that

E (��) = �0 =
Z
��pdx

from unbiasedness. Note that �� is a function of x but not �0.

Di¤erentiating the above equality with respect to �0, we get

1 =

Z
��p0dx =

Z
��
�
p0

p

�
pdx

= E
�
��
�
p0

p

��
= E

�
��
d ln p
d�0

�
= cov

�
��;
d ln p
d�0

�
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The Cauchy-Schwartz inequality implies that

[cov(X ;Y )]2 < V (X )V (Y ).

Thus �
cov

�
��;
d ln p
d�0

��2
= 1 � V (��)V

�
d ln p
d�0

�
) V (��) �

�
V
�
d ln p
d�0

���1
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Note:

E
�
d2 ln p

d�2

�
= �E

"�
d ln p
d�

�2#
= �V

�
d ln p
d�

�
Since

d2 ln p

d�2
=

d
d�

�
p0

p

�
=
pp00 � (p0)2

p2
=
p00

p
�
�
p0

p

�2
) E

�
d2 ln p

d�2

�
= �E

"�
d ln p
d�

�2#

(why?)

Thus we have an expression for the variance of the �rst derivative on ln p
in term of the second derivative - a property we have seen before.
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Linear Model:

The assumption of ��xed in repeated samples� is rarely useful in
economics. The basic assumption is that the distribution of X satis�es

p lim
�
X 0X
n

�
= Q

where Q is positive de�nite, and does not depend on parameters.

Our density of observables is p(y ; x); usually, we assume that this is
p(y jx)p(x) and focus on the �rst factor. (Why is this restrictive?)

Professor N. M. Kiefer (Cornell University) Lecture 9: Asymptotics III(MLE) 19 / 20



Then the ML estimator depends on the conditional distribution.

It is useful to go through the asymptotics applied to the linear model.

Recall that �̂ = � + (X 0X )�1X" = � + [X 0X=n]�1[X=n]".

If p lim [X 0X=n] = Q and p lim[X 0�=n] = 0, then p lim �̂ = � (i.e., �̂ is a
consistent estimator of �). Recall that if also

n1=2[X 0"=n] D! N(0; �2Q), then

n1=2[�̂ � �] D! N(0; �2Q�1):
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