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Uses of Asymptotic Distributions

Suppose �Xn � �! 0 in probability. (What can be said about the
distribution of �Xn � �?)
In order to get distribution theory, we need to norm the random variable;
we usually look at n1=2( �Xn � �).
Note that the random variable sequence fn( �Xn � �), n � 1g does not
converge in probability. (Why not?).

We might be able to make probability statements like

limn!1 P(n1=2( �Xn � �) < z) = F (z)

for some distribution F .
Then we could use F as an approximate distribution for n1=2( �Xn � �).
This implies an approximate distribution for �Xn.
It is often easier to work with Yn = n1=2( �Xn � �)=�.
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Moment Generating Function

De�nition: The moment generating function for the rv X (or the
distribution f ) is

mX (t) = E (etX ) =
Z 1

�1
etx f (x)dx :

The name comes from the fact that

d rm
dtr

=

Z 1

�1
x r etx f (x)dx = E (X r )

when evaluated at t = 0

The subscript is dropped when unnecessary.
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Moment Generating Function (cont�d):

Note the series expansion:

m(t) = E (etX ) = E (1+ Xt +
1
2!
(Xt)2 + :::)

= 1+ �1t +
1
2
�2t2 + :::

where �r = EX r

(For example: �1 = �; �2 = �2 + �2):

Property 1 : The moment generating function of
nP
i=1
Xi when Xi are

independent is the product of the moment generating functions of Xi .
(Exercise: Prove this.)
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Moment Generating Function (cont�d)

Property 2 : Let X and Y be random variables with continuous densities
f (x) and g(y). If the moment generating function of X is equal to that
of Y in an interval �h < t < h, then f = g .

Example: The moment generating function for X � N(0; 1) is

m(t) = E (etx ) =
1p
2�

Z 1

�1
etxe�

1
2 x

2
dx

= et
2=2
�

1p
2�

�Z 1

�1
e�

1
2 (x�t)

2
dx =?
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Characteristic Function

The mgf does not always exist. The function �X (t) = Ee
itX always exists

and is continuous and bounded.

We know Xn
d! X ) �Xn (t)! �X (t):

The converse
�Xn (t)! �X (t) (8t)) Xn

d! X

is also true

If E jX j <1 then �0(0) = iEX :
Similarly, if EX 2 <1 then �00(0) = �EX 2, etc.
CFs combine like mgfs.
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Properties of c.f.s.

�X (t) = Ee
itX = E cos tX + iE sin tX

Thus �(0) = 1; j�(t)j � 1;and �(t) = �(�t)
where the bar indicates complex conjugate.

If X is symmetrically distributed, � is real-valued.
Some cfs: Degenerate at �; �(t) = e it�

Binomial(n,p), �(t) = (pe it + 1� p)n

N(�; �2); �(t) = e it���
2t2=2
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Using Characteristic Function: Application 1, WLLN

Suppose fXig are iid each with cf �(t)
Then,

Ee itX = �n(t=n) = (1+ it�=n + o(1=n))n

! e it�

The cf of the constant �.

Application 2 will give a central limit theorem.
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Using Characteristic Function: Application 2, CLT

Central Limit Theorem: (CLT ) (Lindberg-Levy) The distribution of
Yn = n1=2( �Xn � �)=� as n!1 is

�(z) =
1p
2�

Z z

�1
e�x

2=2dx

(standard normal)

Proof : Let �Xi��(t) be the characteristic function of (Xi � �). That is

�Xi��(t) = 1�
�2t2

2
+ o(t2)

where o(t2) is the remainder term such that o(t2)=t2 ! 0 as t ! 0:
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We know that

Yn =
p
n( �Xn � �)
�

=

Pn
i=1(Xi � �)
�
p
n

;

Hence

�Yn (t) =

�
�Xi��

�
t

�
p
n

��n
=

�
1� t2

2n
+ o

�
t2

n

��n
) ln�Yn (t) = n ln

�
1� t2

2n
+ o

�
1
n

��
� n ln

�
1� t2

2n

�
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ln�Yn (t) � n ln
h
1� t2

2n

i
) �Yn (t)! e�t

2=2

as n!1 (using ln(1+ x) � x for small x)
which is the cf of a standard normal random variable.

Point of the Central Limit Theorem: The distribution function of �Xn for
large n can be approximated by that of a normal with mean � and
variance �2=n.
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Notes

1. Identical means and variances can be dropped straightforwardly.
We need some restrictions on the variance sequence though. In this case,
we work with

Yn =
Pn
i=1(Xi � �i )�Pn
i=1 �

2
i

�1=2 :
2. Versions of the Central Limit Theorem with random vectors are also
available. Just apply univariate theorems to all linear combinations.

3. The basic requirement is that each term in the sum should make a
negligible contribution.
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Examples:

1. Estimation of mean � from a sample of normal random variables:
In this case, we estimate � by �X , and the asymptotic approximation for
the distribution of �X or (�X � �) is exact.

2. Consider n1=2(�̂ � �) where �̂ is the LS estimator.

n1=2(�̂ � �) = n1=2(X 0X )�1X 0"

= [X 0X=n]�1n1=2[X 0"=n]

Where [X 0X=n] is the sample second moment matrix of the regressors.
[X 0X=n] is O(1) or maybe Op(1)depending on assumptions.
Its lim or plim is Q, a KxK p.d. matrix.
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Regression Example Cont�d

What about n1=2[X 0"=n] =
p
n(1=n)

P
x 0i �i?

This is
p
n times a sample mean of x 0i �i :These have

Ex 0i �i = 0;Vx
0
i �i = �

2Q (discuss)

Under the assumption that regressors are well-behaved (i.e., contribution
of any particular observation to [X 0"=n] is negligible), we can apply a
Central Limit Theorem and conclude that

n1=2(�̂ � �) = [X 0X=n]�1n1=2[X 0"=n] D! N(0; �2Q�1).

Consistent with previous results?
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The Delta Method

The delta method is a "trick" for approximating the limiting distribution
of a function of a statistic whose limiting distribution is known. From the

CMT we know that Xn
d! X ) g(Xn)

d! g(X ):

Suppose Xn =
p
n(X n � �):What can we say about

p
n(g(X n)� g(�))?

Expand
g(X n) � g(�) + g 0(�)(X n � �)

So p
n(g(X n)� g(�)) � g 0(�)

p
n(X n � �)

Hence if
p
n(X n � �)! N(0; �2)

Then p
n(g(X n)� g(�))! N(0; g 0(�)2�2)
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Multivariate CLT and Delta

Suppose fXig are K-variate rv�s , EX = �;VX = �

Then we consider Y = t 0X � t 0�; univariate with EY = 0;VY = t 0�t and
apply our CLT to conclude

p
n(Xn � �)! N(0;�)

For the Delta method, suppose g : RK ! Rm and supposep
n(X n � �)! N(0;�)

Write g(X n) � g(�) + g 0(�)(X n � �) where g 0(�) is the mxk matrix of
derivatives and conclude

p
n(g(X n)� g(�))! N(0; g 0(�)�(g 0(�))T )
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