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We are interested in the properties of estimators as

n!1:

Consider a sequence of random variables

fXn; n � 1g:

Often Xn is an estimator such as a sample mean or c�n
Often it is convenient to center the sequence: fc�n � �g
and sometimes to scale f(c�n � �)=�ng
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Plim

De�nition: (convergence in probability)

A sequence of random variables fXn; n � 1g is said to converge weakly to
a constant c if

lim
n!1

P(jXn � c j > ") = 0

for every given " > 0.

This is written p limXn = c or Xn
p! c

Some properties of plim:
1. plim XY = plim X plim Y
2. plim (X + Y ) = plim X + plim Y
3. Slutsky�s theorem: If the function g is continuous at plim X , then
plim g(X ) = g(plim X ).
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A.S. convergence

De�nition: (Strong convergence)

A sequence of random variables is said to converge strongly to a constant
c if

P( lim
n!1

Xn = c) = 1

or
lim
N!1

P(sup
n>N

jxn � c j > ") = 0:

Strong convergence is also called almost sure convergence or convergence
with probability one and is written Xn ! c w.p. 1 or Xn

a:s :! c .
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Di¤erence betwen convergence a.s. and plim

plim involves probabilities on each element of the sequence, and limits of
these probabilities.

limn!1 P(jXn � c j > ") = 0

Strong convergence involves probabilities on the entire sequence.

P(limn!1 Xn = c) = 1

Sequence of marginal probabilities vs. joint probability over in�nite
sequences.

Note a.s. convergence implies plim.
Di¤erence usually doesn�t matter in applications and plim is easier to
establish.
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Laws of Large Numbers:

Let fXn; n � 1g be observations and suppose we look at the sequence

�Xn =
Pn
i=1 Xi=n

when does �Xn
p! � where � is some parameter?

Weak Law of Large Numbers: (WLLN) Let E (Xi ) = �, V (Xi ) = �2,
cov(XiXj ) = 0.
Then �Xn � �! 0 in probability.
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Proof of WLLN

Lemma: Chebyshev�s Inequality :

P(jX � �j � k) � �2=k2 where E (X ) = � and V (X ) = �2.

Proof of Chebshev�s inequality

�2 =

Z
(x � �)2dF

=
��kR
�1
(x � �)2dF +

�+kR
��k

(x � �)2dF

+
1R
�+k

(x � �)2dF
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Proof of WLLN (cont�d)

Put in the largest value of x in the �rst and smallest in the last integral,
and drop the middle to get:

�2 � k2P(jx � �j � k)

Proof of WLLN: Since we are interested in Xn, note that

E (Xn) = � and V (Xn) = �2=n.

Consequently,

limn!1 P(j�Xn � �j > ") 5 limn!1 �2=n"2 = 0.
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Notes:

1. E (Xi ) = �i is okay. Consider

�Xn � ��n with ��n = n�1
P
�i :

2. V (Xi ) = �2i is okay. As long as lim
P
�2i =n

2 = 0, our proof applies.

3. Existence of �2 can be dropped if we assume independent and
identically distributed observations.

In this case, the proof is di¤erent and is based on Markov�s inequality

P(jX j � k) � E jX j=k

from which Chebyshev�s inequality follows.
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Strong Law of Large Numbers:

If Xi are independent with E (Xi ) = �i , V (Xi ) = �
2
i and

P
�2i =i

2 <1.
Then �Xn � ��n ! 0 almost surely (a.s.).

We can drop the existence of �2i if we assume independent and identically
distributed observations.

Example (Shiryayev): let the probability space be [0,1) with Lebesgue
measure (length of intervals). To each element ! of [0,1), there is a
sequence fxigwhere xi is the ith element in the dyadic expansion of !;i.e.
!=0:x1x2:::; xi 2 f0; 1g: Then
P(X1 = x1; :::;Xn = xn) = P(x1=2+ x2=22 + :::xn=2n � ! <
x1=2+ x2=22 + :::xn=2n + 1=2n) = 1=2n:Thus
P(X = 1) = P(X = 0) = 1=2 and the obs are iid. By the SLLN,P
Xi=n! 1=2:

Interpretation? Borel result on normal numbers.
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Weak Convergence in Distribution

De�nition: (Convergence in distribution):

A sequence of random variables fXn; n � 1g with distribution functions
fFn(x) = P(Xn � x); n � 1g is said to converge in distribution to a
random variable X with distribution function F (x) if and only if
limn!1 Fn(x) = F (x) at all points of continuity of F (x).

Notation: Xn
D! X .

plim is a special case in which F is a degenerate distribution.
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More on Convergence in Distribution

An equivalent characterization is:

Ef (Xn)! Ef (X )

for all bounded continuous functions f.Another is

P(Xn 2 B)! P(X 2 B)

for all sets B with P(@B) = 0:

We have Xn
as!) Xn

p!) Xn
d!
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Continuous Mapping Theorem

Convergence in distribution is used to approximate the distribution of
estimators.

If an estimator is consistent (plim=true value), studying the limiting
distribution nontrivially requires norming.

CMT: Let g(x) be continuous on a set which has probability one. Then

Xn
d! X ) g(Xn)

d! g(X )
Xn

p! X ) g(Xn)
p! g(X )

Xn
as! X ) g(Xn)

as! g(X )

The CMT is extremely useful. Why?
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Some properties of convergence in probability (plim) and
convergence in distribution:

1. Xn and Yn are random variable sequences. If plim(Xn � Yn) = 0
and Yn

D! Y , then Xn
D! Y as well. This is an extremely useful device.

2. If Yn
D! Y and Xn ! c in probability (i.e., plimXn = c), then

a. Xn + Yn
D! c + Y

b. XnYn
D! cY

c. Yn=Xn
D! Y =c , c 6= 0.
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"Big O and little o"

This notation is used to denote relative orders of magnitude of sequences
in the limit.

Sequences fxig; fbig (nonstochastic, for now)

xn = O(bn)) lim
n!1

xn=bn = �1 < c <1
xn = o(bn)) lim

n!1
xn=bn = 0

Thus

xn = o(1)) xn ! 0; xn = o(n)) xn=n! 0
xn = O(1)) xn ! c ; xn = O(n)) xn=n! c
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Stochastic Versions

For stochastic sequences fXig we have

Xn = Op(bn)) 8�9C such that lim
n!1

P(jXn=bnj < C ) > 1� �

This says that the ratio remains bounded in probability. Also

Xn = op(bn)) p limXn=bn = 0

Thus for example (using results above) if

Xn � Yn = op(1) and Xn
d! X

Then Yn
d! X
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Further Properties of Op and op

op(1) + op(1) = op(1)

op(1) + Op(1) = Op(1)

Op(1)op(1) = op(1)

(1+ op(1))�1 = Op(1)

op(bn) = bnop(1)

Op(bn) = bnOp(1)
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