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Specification Error:

Suppose the model generating the data is

y=XB+¢
However, the model fitted is y = X*8* + ¢, with the LS estimator

b* = (X*lx*)—lx*/y
— (X*/X*)flx*lxﬁ + (X*/X*)flx*/a

Then Eb* = (X*X*)~1X* X8 and V/(b*) = o?(X* X*)~!
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Application 1: Excluded variables

Let X = [X1Xz] and X* = X;.
That is, the model that generates the data is

y = X181 + X2, + €.
Consider b* as an estimator of [3;.
Proposition: b* is biased.
Proof:

b* — (X*/X*)—lx*/y

= (X{X1) T X[ (X108 + XafBy + €)

= B+ (X{X1) X[ X, + (X{X1) T X]e
Eb* = Bi+(X{X1) ' X{X2f3,

The second expression on the right hand side is the bias. B
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A classic example:

Suppose that the model generating the data is
Yi=PBo+ P15+ ai+ei

y: natural logarithm of earnings

S: schooling

a: ability

a is unobserved and omitted, but it is positively correlated with S.
Then .
w-[ R lss ¥el [55]
A ¥Ss X > as

supposing a is measured so that its coefficient is 1.

If we suppose that > a = 0, then the bias in the coefficient of schooling is
positive.

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV



A classic example (cont'd)

Generally, we cannot sign the bias, it depends not only on 3, but also on
(Xl’Xl)*le’Xg, which of course can be positive or negative.

Note that Vb* = 0%(X{X1)™1. Soif B, =0, there is an efficiency gain
from imposing the restriction and leaving out X. This confirms our
earlier results.
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Estimation of Variance:

e* = My = Mi(Xi8; + X283, +¢)

= Mi Xo3, + Mhe

= e*e* = ,B/2X2IM1X2ﬁ2 + €/M1€ + 2,3/2X2/M16
Note the expected value of the last term is 0.

Clearly, we cannot estimate o2 by usual methods even if X{X; = 0 (no
bias) since still M; X, # 0.

There is hope of detecting misspecification from the residuals since
Ee*e* = o? M, under correct specification and

/ - . pe .
Ee*e* = o2 My + MngﬂzﬁzXéMl under misspecification.
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Application 2:

Inclusion of unnecessary variables.

Let X = X; and X* = [X1 X3]
X1 isNxKlanngisNxKg.
That is, the “true” model is y = X153 + €.

Proposition: b* is unbiased.
Proof: Eb* = (X*X*)"1X*Xp3

XX XD 1T XX 5
XX XX X)Xy
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The partitioned inversion formula gives
r —(X{X1)"IX{X,D
— DX X1 (X{ X1) ™1 D
for (X*X*)~! where D = (X;M1X2)~! and

M= (X{X1) ™'+ (X{X1) 7 EX] X DX X (X X1) L
This is a symmetric matrix. Multiplying this out verifies that

o[ 2] m

Note that the variance of b* is

V(b*) _ J2(X*/X*)fl_
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Proposition: The variance of the coefficients of X7 in the unrestricted
(where the matrix of explanatory variables is X*) is greater than the
variance of the coefficients in the restricted model (where the matrix of
explanatory variables is Xi).

Proof: Using partitioned inversion, the variance of the first K; elements
(coefficients on Xi) is 02(X{MaX1)™1 > 0(X{X1)~! = variance of the
restricted estimator. (why?) B

Estimation of o?:
e* =My = M*e

Under normality,
(e¥e* /a?) = (e/M*e/0?) ~ X3 (N — K1 — K3)

= s has higher variance than in the restricted model. (why?)
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Note on the interpretation of bias:

Ey = X3 defines (3 and LS gives unbiased estimates of that 3. Questions
of bias really require a model.

Further statistical assumptions like

Vy = o2l

allow some sorting out of specifications, but is this assumption really
attractive?
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Cross products matrix:

In LS, “everything” comes from the cross products matrix.

Definition: The cross products matrix is

> Y,~2 Do VidoYiXeit Dl YiXKi
[ Yy y'X ] e X Yxe Yo xki
Xy XX | |o o Sox3 Y xoixki
[ [ ] [ ] e Z XI2(i
with a column of ones in X.
It is a symmetric matrix.
Note that x; refers to the jth column of X.
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Heteroskedasticity

V(Y)=V # a2l
Is the LS estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity,
V(B) = (X'X)1X' VX (X' X)L,

Proof:

V(B) = E(X'X) 1 X e’ X(X'X) !
= (X' X)IX'VX(X'X)"l. m

Suppose Y = V/(e) is a diagonal matrix. Then
X' X =EY Xie?X!.

Note that the cross products have expectation 0.

This suggests using ZX,-e,?X,-’.

So we can estimate standard errors under the assumption that V(y) is
diagonal.
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Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that 0,2 varies with x;. Then reorder the observations
in the order of x;. Suppose N is even. If € was observed, then

ittty

~ F(N/2,N/2)
fns241 T Efn/2)42 T T EN

could be used.

We are tempted to use e;, but we can't because the first N/2 ¢;'s are not
independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e separately for each
half of the sample with K parameters. The statistic is F((N/2) — K,
(N/2) — K).

It turns out that this “works" better if you delete the middle N/3
observations.
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Testing for heteroskedasticity (cont'd):

2. Breusch-Pagan test:

The disturbances ¢; are assumed to be normally and independently
distributed with variance 02 = h(z/a) where h denotes a function, and z/
is a 1 x P vector of variables influencing heteroskedasticity.

Let Z be an N x P matrix with row vectors z,(. Some of the variables in
Z could be the same as the variables in X.

Regress e2/a%/,L on Z, including an intercept term.

Note that (sum of squares due to Z)/2 ~ x?(P — 1) approximately. The
factor 1/2 appears here since under normality the variance of £2/0? is
2(Ee* = 30%).
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Testing for heteroskedasticity (cont'd):

An alternative approach (Koenker) drops normality and estimates the
variance of e? directly by N=1 3" (e? — 52)2. The resulting statistic can be
obtained by regressing e on z and looking at NR? from this regression.

Other tests are available for time series.
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Testing Normality

The moment generating function of a random variable x is
m(t) = E(exp(tx)); note m'(0) = Ex; m"(0) = Ex?; etc.
The MGF of the normal distribution n(u,o?) is m(t) = exp(tu + t?0?/2).

Proof:
let ¢ = (2n0)~1/?
m(t) = c/exp(tx) exp(—1/2(x — p)?/o?)dx

= c/exp(—1/2(x—,u—02t)2/02+tu+02t2/2)dx

= exp(tp +0°t?/2).
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Testing Normality (cont'd)

Thus for the regression errors € we have
Ec =0; Ec? = 0%, Ee® = 0; Ec* = 30* Es® = 0; etc.

It is easier to test the 3rd and 4th moment conditions than normality
directly.
If we knew the ¢, it would be easy to come up with a x? test.

In fact a test can be formed using the residuals e instead (and relying on
asymptotic distibution theory). The test statistic is

n[((e/s)%)2/6 + ((e/s)* — 3)*/24].
Which is x? with 2 df.

This is the Kiefer/Salmon test (also called Jarque/Bera).
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