Economics 620, Lecture 7: Still More, But Last, on the K-Varable Linear Model

Nicholas M. Kiefer

Cornell University

Specification Error:

Suppose the model generating the data is

$$
y=X \beta+\varepsilon
$$

However, the model fitted is $y=X^{*} \beta^{*}+\varepsilon$, with the LS estimator
$b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y$
$=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta+\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} \varepsilon$.
Then $E b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta$ and $V\left(b^{*}\right)=\sigma^{2}\left(X^{* \prime} X^{*}\right)^{-1}$

Application 1: Excluded variables

Let $X=\left[X_{1} X_{2}\right]$ and $X^{*}=X_{1}$.
That is, the model that generates the data is

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
$$

Consider b^{*} as an estimator of β_{1}.
Proposition: b^{*} is biased.
Proof:

$$
\begin{aligned}
b^{*} & =\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y \\
& =\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =\beta_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \varepsilon \\
E b^{*} & =\beta_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}
\end{aligned}
$$

The second expression on the right hand side is the bias.

A classic example:

Suppose that the model generating the data is
$y_{i}=\beta_{0}+\beta_{1} S_{i}+a_{i}+\varepsilon_{i}$
y : natural logarithm of earnings
S : schooling
a: ability
a is unobserved and omitted, but it is positively correlated with S.
Then

$$
E b^{*}=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{cc}
N & \sum S \\
\sum S & \sum S^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum a \\
\sum a S
\end{array}\right]
$$

supposing a is measured so that its coefficient is 1 .
If we suppose that $\sum a=0$, then the bias in the coefficient of schooling is positive.

A classic example (cont'd)

Generally, we cannot sign the bias, it depends not only on β_{2} but also on $\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}$, which of course can be positive or negative.

Note that $V b^{*}=\sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}$. So if $\beta_{2}=0$, there is an efficiency gain from imposing the restriction and leaving out X_{2}. This confirms our earlier results.

Estimation of Variance:

$$
\begin{aligned}
& e^{*}=M_{1} y=M_{1}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =M_{1} X_{2} \beta_{2}+M_{1} \epsilon \\
& \Rightarrow e^{* \prime} e^{*}=\beta_{2}^{\prime} X_{2}^{\prime} M_{1} X_{2} \beta_{2}+\varepsilon^{\prime} M_{1} \varepsilon+2 \beta_{2}^{\prime} X_{2}^{\prime} M_{1} \epsilon \\
& \text { Note the expected value of the last term is } 0 \text {. }
\end{aligned}
$$

Clearly, we cannot estimate σ^{2} by usual methods even if $X_{1}^{\prime} X_{2}=0$ (no bias) since still $M_{1} X_{2} \neq 0$.

There is hope of detecting misspecification from the residuals since $E e^{*} e^{* \prime}=\sigma^{2} M_{1}$ under correct specification and $E e^{*} e^{* \prime}=\sigma^{2} M_{1}+M_{1} X_{2} \beta_{2} \beta_{2}^{\prime} X_{2}^{\prime} M_{1}$ under misspecification.

Application 2:

Inclusion of unnecessary variables.
Let $X=X_{1}$ and $X^{*}=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]$
X_{1} is $N \times K_{1}$ and X_{2} is $N \times K_{2}$.
That is, the "true" model is $y=X_{1} \beta+\varepsilon$.
Proposition: b^{*} is unbiased.
Proof: $E b^{*}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} X \beta$

$$
=\left[\begin{array}{ll}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2} \\
X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
X_{1}^{\prime} X_{1} \\
X_{2}^{\prime} X_{1}
\end{array}\right] \beta
$$

The partitioned inversion formula gives

for $\left(X^{* \prime} X^{*}\right)^{-1}$ where $D=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1}$ and

$$
\Gamma=\left(X_{1}^{\prime} X_{1}\right)^{-1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} D X_{2}^{\prime} X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1}
$$

This is a symmetric matrix. Multiplying this out verifies that

$$
E b^{*}=\left[\begin{array}{l}
\beta \\
0
\end{array}\right]
$$

Note that the variance of b^{*} is

$$
V\left(b^{*}\right)=\sigma^{2}\left(X^{* \prime} X^{*}\right)^{-1}
$$

Proposition: The variance of the coefficients of X_{1} in the unrestricted (where the matrix of explanatory variables is X^{*}) is greater than the variance of the coefficients in the restricted model (where the matrix of explanatory variables is X_{1}).

Proof: Using partitioned inversion, the variance of the first K_{1} elements (coefficients on X_{1}) is $\sigma^{2}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} \geq \sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}=$ variance of the restricted estimator. (why?) ■

Estimation of σ^{2} :
$e^{*}=M^{*} y=M^{*} \varepsilon$
Under normality, $\left(e^{* \prime} e^{*} / \sigma^{2}\right)=\left(\varepsilon^{\prime} M^{*} \varepsilon / \sigma^{2}\right) \sim \chi^{2}\left(N-K_{1}-K_{2}\right)$
$\Rightarrow s^{2}$ has higher variance than in the restricted model. (why?)

Note on the interpretation of bias:

$E y=X \beta$ defines β and $L S$ gives unbiased estimates of that β. Questions of bias really require a model.

Further statistical assumptions like

$$
V y=\sigma^{2} I
$$

allow some sorting out of specifications, but is this assumption really attractive?

Cross products matrix:

In $L S$, "everything" comes from the cross products matrix.
Definition: The cross products matrix is
$\left[\begin{array}{cc}y^{\prime} y & y^{\prime} X \\ X^{\prime} y & X^{\prime} X\end{array}\right]=\left[\begin{array}{cccc}\sum y_{i}^{2} & \sum y_{i} & \sum y_{i} x_{2 i} \cdots \sum y_{i} x_{K i} \\ \bullet & \sum 1 & \sum x_{2 i} \cdots \sum x_{K i} \\ \bullet & \bullet & & \sum x_{2 i}^{2} \cdots\end{array}\right] x_{2 i} x_{K i}$.
with a column of ones in X.
It is a symmetric matrix.
Note that x_{j} refers to the j th column of X.

Heteroskedasticity

$V(Y)=V \neq \sigma^{2} I$
Is the $L S$ estimator unbiased? Is it BLUE?
Proposition: Under the assumption of heteroskedasticity, $V(\hat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} V X\left(X^{\prime} X\right)^{-1}$.

Proof:
$V(\hat{\beta})=E\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1}$
$=\left(X^{\prime} X\right)^{-1} X^{\prime} V X\left(X^{\prime} X\right)^{-1}$.
Suppose $\sum=V(\varepsilon)$ is a diagonal matrix. Then

$$
X^{\prime} \sum X=E \sum X_{i} \varepsilon_{i}^{2} X_{i}^{\prime}
$$

Note that the cross products have expectation 0.
This suggests using $\sum X_{i} e_{i}^{2} X_{i}^{\prime}$.
So we can estimate standard errors under the assumption that $V(y)$ is diagonal.

Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that σ_{i}^{2} varies with x_{i}. Then reorder the observations in the order of x_{i}. Suppose N is even. If ε was observed, then

$$
\frac{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{N / 2}^{2}}{\varepsilon_{[(n / 2)+1]}^{2}+\varepsilon_{[(N / 2)+2]}^{2}+\ldots+\varepsilon_{N}^{2}} \sim F(N / 2, N / 2)
$$

could be used.
We are tempted to use e_{i}, but we can't because the first $N / 2 e_{i}$'s are not independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e separately for each half of the sample with K parameters. The statistic is $F((N / 2)-K$, $(N / 2)-K)$.
It turns out that this "works" better if you delete the middle $N / 3$ observations.

Testing for heteroskedasticity (cont'd):

2. Breusch-Pagan test:

The disturbances ε_{i} are assumed to be normally and independently distributed with variance $\sigma_{i}^{2}=h\left(z_{i}^{\prime} \alpha\right)$ where h denotes a function, and z_{i}^{\prime} is a $1 \times P$ vector of variables influencing heteroskedasticity.

Let Z be an $N \times P$ matrix with row vectors z_{i}^{\prime}. Some of the variables in Z could be the same as the variables in X.

Regress $e^{2} / \sigma_{M L}^{2}$ on Z, including an intercept term.
Note that (sum of squares due to Z) $/ 2 \sim \chi^{2}(P-1)$ approximately. The factor $1 / 2$ appears here since under normality the variance of $\varepsilon^{2} / \sigma^{2}$ is $2\left(E \varepsilon^{4}=3 \sigma^{4}\right)$.

Testing for heteroskedasticity (cont'd):

An alternative approach (Koenker) drops normality and estimates the variance of e_{i}^{2} directly by $N^{-1} \sum\left(e_{i}^{2}-\hat{\sigma}^{2}\right)^{2}$. The resulting statistic can be obtained by regressing e^{2} on z and looking at $N R^{2}$ from this regression.

Other tests are available for time series.

Testing Normality

The moment generating function of a random variable x is $m(t)=E(\exp (t x))$; note $m^{\prime}(0)=E x ; m^{\prime \prime}(0)=E x^{2}$; etc. The MGF of the normal distribution $n\left(\mu, \sigma^{2}\right)$ is $m(t)=\exp \left(t \mu+t^{2} \sigma^{2} / 2\right)$.

Proof: let $c=(2 \pi \sigma)^{-1 / 2}$

$$
\begin{aligned}
m(t) & =c \int \exp (t x) \exp \left(-1 / 2(x-\mu)^{2} / \sigma^{2}\right) d x \\
& =c \int \exp \left(-1 / 2\left(x-\mu-\sigma^{2} t\right)^{2} / \sigma^{2}+t \mu+\sigma^{2} t^{2} / 2\right) d x \\
& =\exp \left(t \mu+\sigma^{2} t^{2} / 2\right)
\end{aligned}
$$

Testing Normality (cont'd)

Thus for the regression errors ε we have $E \varepsilon=0 ; E \varepsilon^{2}=\sigma^{2} ; E \varepsilon^{3}=0 ; E \varepsilon^{4}=3 \sigma^{4} ; E \varepsilon^{5}=0 ;$ etc.

It is easier to test the 3rd and 4th moment conditions than normality directly.
If we knew the ε, it would be easy to come up with a χ^{2} test.
In fact a test can be formed using the residuals e instead (and relying on asymptotic distibution theory). The test statistic is

$$
\left.n\left[\overline{\left((e / s)^{3}\right)^{2}} / 6+\overline{\left((e / s)^{4}\right.}-3\right)^{2} / 24\right] .
$$

Which is χ^{2} with $2 d f$.
This is the Kiefer/Salmon test (also called Jarque/Bera).

