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Speci�cation Error:

Suppose the model generating the data is

y = X� + "

However, the model �tted is y = X ��� + ", with the LS estimator

b� = (X �0X �)�1X �0y
= (X �0X �)�1X �0X� + (X �0X �)�1X �0".

Then Eb� = (X �0X �)�1X �0X� and V (b�) = �2(X �0X �)�1
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Application 1: Excluded variables

Let X = [X1X2] and X � = X1.
That is, the model that generates the data is

y = X1�1 + X2�2 + ":

Consider b� as an estimator of �1:

Proposition: b� is biased.

Proof :

b� = (X �0X �)�1X �0y

= (X 01X1)
�1X 01(X1�1 + X2�2 + ")

= �1 + (X
0
1X1)

�1X 01X2�2 + (X
0
1X1)

�1X 01"

Eb� = �1 + (X
0
1X1)

�1X 01X2�2

The second expression on the right hand side is the bias. �
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A classic example:

Suppose that the model generating the data is
yi = �0 + �1Si + ai + "i
y : natural logarithm of earnings
S : schooling
a: ability

a is unobserved and omitted, but it is positively correlated with S .
Then

Eb� =
�
�0
�1

�
+

�
N

P
SP

S
P
S2

��1 � P
aP
aS

�
supposing a is measured so that its coe¢ cient is 1.

If we suppose that
P
a = 0, then the bias in the coe¢ cient of schooling is

positive.
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A classic example (cont�d)

Generally, we cannot sign the bias, it depends not only on �2 but also on
(X 01X1)

�1X 01X2, which of course can be positive or negative.

Note that Vb� = �2(X 01X1)
�1. So if �2 = 0, there is an e¢ ciency gain

from imposing the restriction and leaving out X2. This con�rms our
earlier results.
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Estimation of Variance:

e� = M1y = M1(X1�1 + X2�2 + ")
= M1X2�2 +M1�
) e�0e� = �02X

0
2M1X2�2 + "

0M1"+ 2�02X
0
2M1�

Note the expected value of the last term is 0.

Clearly, we cannot estimate �2 by usual methods even if X 01X2 = 0 (no
bias) since still M1X2 6= 0.

There is hope of detecting misspeci�cation from the residuals since
Ee�e�0 = �2M1 under correct speci�cation and
Ee�e�0 = �2M1 +M1X2�2�

0
2X

0
2M1 under misspeci�cation.
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Application 2:

Inclusion of unnecessary variables.

Let X = X1 and X � = [X1 X2]
X1 is N � K1 and X2 is N � K2.
That is, the �true�model is y = X1� + ".

Proposition: b� is unbiased.

Proof : Eb� = (X �0X �)�1X �0X�

=

�
X 01X1 X 01X2
X 02X1 X 02X2

��1 �
X 01X1
X 02X1

�
�
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The partitioned inversion formula gives�
� �(X 01X1)�1X 01X2D

�DX 02X1(X 01X1)�1 D

�
for (X �0X �)�1 where D = (X 02M1X2)�1 and

� = (X 01X1)
�1 + (X 01X1)

�1X 01X2DX
0
2X1(X

0
1X1)

�1:

This is a symmetric matrix. Multiplying this out veri�es that

Eb� =
�
�
0

�
. �

Note that the variance of b� is

V (b�) = �2(X �0X �)�1.
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Proposition: The variance of the coe¢ cients of X1 in the unrestricted
(where the matrix of explanatory variables is X �) is greater than the
variance of the coe¢ cients in the restricted model (where the matrix of
explanatory variables is X1).

Proof : Using partitioned inversion, the variance of the �rst K1 elements
(coe¢ cients on X1) is �2(X 01M2X1)�1 � �2(X 01X1)�1 = variance of the
restricted estimator. (why?) �

Estimation of �2:
e� = M�y = M�"

Under normality,
(e�0e�=�2) = ("0M�"=�2) � �2(N � K1 � K2)

) s2 has higher variance than in the restricted model. (why?)
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Note on the interpretation of bias:

Ey = X� de�nes � and LS gives unbiased estimates of that �. Questions
of bias really require a model.

Further statistical assumptions like

Vy = �2I

allow some sorting out of speci�cations, but is this assumption really
attractive?
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Cross products matrix:

In LS , �everything� comes from the cross products matrix.

De�nition: The cross products matrix is

�
y 0y y 0X
X 0y X 0X

�
=

2664
P
y2i
P
yi
P
yix2i � � �

P
yixKi

�
P
1

P
x2i � � �

P
xKi

� �
P
x22i � � �

P
x2ixKi

� � � � � �
P
x2Ki

3775
with a column of ones in X .
It is a symmetric matrix.
Note that xj refers to the jth column of X .
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Heteroskedasticity

V (Y ) = V 6= �2I
Is the LS estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity,
V (�̂) = (X 0X )�1X 0VX (X 0X )�1:

Proof :
V (�̂) = E (X 0X )�1X 0""0X (X 0X )�1

= (X 0X )�1X 0VX (X 0X )�1. �

Suppose
P
= V (") is a diagonal matrix. Then

X 0
P
X = E

P
Xi"2i X

0
i :

Note that the cross products have expectation 0.
This suggests using

P
Xie2i X

0
i .

So we can estimate standard errors under the assumption that V (y) is
diagonal.
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Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that �2i varies with xi . Then reorder the observations
in the order of xi . Suppose N is even. If " was observed, then

"21 + "
2
2 + :::+ "

2
N=2

"2[(n=2)+1] + "
2
[(N=2)+2] + :::+ "

2
N
� F (N=2;N=2)

could be used.

We are tempted to use ei , but we can�t because the �rst N=2 ei�s are not
independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e separately for each
half of the sample with K parameters. The statistic is F ((N=2)� K ;
(N=2)� K ):
It turns out that this �works�better if you delete the middle N=3
observations.
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Testing for heteroskedasticity (cont�d):

2. Breusch-Pagan test:

The disturbances "i are assumed to be normally and independently
distributed with variance �2i = h(z

0
i�) where h denotes a function, and z

0
i

is a 1� P vector of variables in�uencing heteroskedasticity.

Let Z be an N � P matrix with row vectors z 0i . Some of the variables in
Z could be the same as the variables in X .

Regress e2=�2ML on Z , including an intercept term.

Note that (sum of squares due to Z )=2 � �2(P � 1) approximately. The
factor 1=2 appears here since under normality the variance of "2=�2 is
2(E"4 = 3�4).
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Testing for heteroskedasticity (cont�d):

An alternative approach (Koenker) drops normality and estimates the
variance of e2i directly by N

�1P(e2i � �̂2)2. The resulting statistic can be
obtained by regressing e2 on z and looking at NR2 from this regression.

Other tests are available for time series.

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV 15 / 17



Testing Normality

The moment generating function of a random variable x is
m(t) = E (exp(tx)); note m0(0) = Ex ; m00(0) = Ex2; etc.
The MGF of the normal distribution n(�; �2) is m(t) = exp(t�+ t2�2=2):

Proof :
let c = (2��)�1=2

m(t) = c
Z
exp(tx) exp(�1=2(x � �)2=�2)dx

= c
Z
exp(�1=2(x � �� �2t)2=�2 + t�+ �2t2=2)dx

= exp(t�+ �2t2=2):
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Testing Normality (cont�d)

Thus for the regression errors " we have
E" = 0; E"2 = �2; E"3 = 0; E"4 = 3�4;E"5 = 0; etc.

It is easier to test the 3rd and 4th moment conditions than normality
directly.
If we knew the ", it would be easy to come up with a �2 test.

In fact a test can be formed using the residuals e instead (and relying on
asymptotic distibution theory). The test statistic is

n[((e=s)3)2=6+ ((e=s)4 � 3)2=24]:

Which is �2 with 2 df :

This is the Kiefer/Salmon test (also called Jarque/Bera).
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