Economics 620, Lecture 7: Still More, But Last, on the K-Varable Linear Model

Nicholas M. Kiefer

Cornell University

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV

Suppose the model generating the data is

$$y = X\beta + \varepsilon$$

However, the model fitted is $y = X^*\beta^* + \varepsilon$, with the LS estimator

$$b^* = (X^{*\prime}X^*)^{-1}X^{*\prime}y = (X^{*\prime}X^*)^{-1}X^{*\prime}X\beta + (X^{*\prime}X^*)^{-1}X^{*\prime}\varepsilon.$$

Then
$$Eb^* = (X^{*\prime}X^*)^{-1}X^{*\prime}Xeta$$
 and $V(b^*) = \sigma^2(X^{*\prime}X^*)^{-1}$

Application 1: Excluded variables

Let $X = [X_1 X_2]$ and $X^* = X_1$.

That is, the model that generates the data is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon.$$

Consider b^* as an estimator of β_1 .

Proposition: b^* is biased.

Proof:

$$b^* = (X^{*'}X^*)^{-1}X^{*'}y$$

= $(X_1'X_1)^{-1}X_1'(X_1\beta_1 + X_2\beta_2 + \varepsilon)$
= $\beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2 + (X_1'X_1)^{-1}X_1'\varepsilon$
 $Eb^* = \beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2$

The second expression on the right hand side is the bias.

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV

A classic example:

Suppose that the model generating the data is

$$y_i = \beta_0 + \beta_1 S_i + a_i + \varepsilon_i$$

- y: natural logarithm of earnings
- S: schooling
- a: ability

a is unobserved and omitted, but it is positively correlated with S. Then

$$Eb^* = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} N & \sum S \\ \sum S & \sum S^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum a \\ \sum aS \end{bmatrix}$$

supposing *a* is measured so that its coefficient is 1.

If we suppose that $\sum a = 0$, then the bias in the coefficient of schooling is positive.

Generally, we cannot sign the bias, it depends not only on β_2 but also on $(X'_1X_1)^{-1}X'_1X_2$, which of course can be positive or negative.

Note that $Vb^* = \sigma^2 (X'_1X_1)^{-1}$. So if $\beta_2 = 0$, there is an efficiency gain from imposing the restriction and leaving out X_2 . This confirms our earlier results.

$$\begin{split} e^* &= M_1 y = M_1 (X_1 \beta_1 + X_2 \beta_2 + \varepsilon) \\ &= M_1 X_2 \beta_2 + M_1 \epsilon \\ &\Rightarrow e^{*'} e^* = \beta'_2 X'_2 M_1 X_2 \beta_2 + \varepsilon' M_1 \varepsilon + 2\beta'_2 X'_2 M_1 \epsilon \\ &\text{Note the expected value of the last term is 0.} \end{split}$$

Clearly, we cannot estimate σ^2 by usual methods even if $X'_1X_2 = 0$ (no bias) since still $M_1X_2 \neq 0$.

There is hope of detecting misspecification from the residuals since $Ee^*e^{*\prime} = \sigma^2 M_1$ under correct specification and $Ee^*e^{*\prime} = \sigma^2 M_1 + M_1 X_2 \beta_2 \beta'_2 X'_2 M_1$ under misspecification.

Inclusion of unnecessary variables.

Let $X = X_1$ and $X^* = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ X_1 is $N \times K_1$ and X_2 is $N \times K_2$. That is, the "true" model is $y = X_1\beta + \varepsilon$.

Proposition: b^* is unbiased.

Proof:
$$Eb^* = (X^{*\prime}X^*)^{-1}X^{*\prime}X\beta$$

= $\begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix}^{-1} \begin{bmatrix} X_1'X_1 \\ X_2'X_1 \end{bmatrix} \beta$

The partitioned inversion formula gives

$$\begin{bmatrix} \Gamma & -(X'_1X_1)^{-1}X'_1X_2D \\ -DX'_2X_1(X'_1X_1)^{-1} & D \end{bmatrix}$$
for $(X^{*'}X^*)^{-1}$ where $D = (X'_2M_1X_2)^{-1}$ and
 $\Gamma = (X'_1X_1)^{-1} + (X'_1X_1)^{-1}X'_1X_2DX'_2X_1(X'_1X_1)^{-1}.$

This is a symmetric matrix. Multiplying this out verifies that

$$Eb^* = \left[\begin{array}{c} \beta \\ \mathbf{0} \end{array} \right]. \blacksquare$$

Note that the variance of b^* is

$$V(b^*) = \sigma^2 (X^{*'} X^*)^{-1}.$$

E ► < E ►

Proposition: The variance of the coefficients of X_1 in the unrestricted (where the matrix of explanatory variables is X^*) is greater than the variance of the coefficients in the restricted model (where the matrix of explanatory variables is X_1).

Proof: Using partitioned inversion, the variance of the first K_1 elements (coefficients on X_1) is $\sigma^2(X'_1M_2X_1)^{-1} \ge \sigma^2(X'_1X_1)^{-1} =$ variance of the restricted estimator. (why?)

Estimation of σ^2 : $e^* = M^* y = M^* \varepsilon$

Under normality, $(e^{*'}e^{*}/\sigma^2) = (\varepsilon' M^* \varepsilon / \sigma^2) \sim \chi^2 (N - K_1 - K_2)$

 $\Rightarrow s^2$ has higher variance than in the restricted model. (why?)

回 と く ヨ と く ヨ と …

 $Ey = X\beta$ defines β and LS gives unbiased estimates of that β . Questions of bias really require a model.

Further statistical assumptions like

$$Vy = \sigma^2 I$$

allow some sorting out of specifications, but is this assumption really attractive?

In LS, "everything" comes from the cross products matrix.

Definition: The cross products matrix is

$$\begin{bmatrix} y'y & y'X \\ X'y & X'X \end{bmatrix} = \begin{bmatrix} \sum y_i^2 \sum y_i \sum y_i x_{2i} \cdots \sum y_i x_{Ki} \\ \bullet & \sum 1 & \sum x_{2i} \cdots \sum x_{Ki} \\ \bullet & \sum x_{2i}^2 \cdots \sum x_{2i} x_{Ki} \\ \bullet & \bullet & \cdots \sum x_{Ki}^2 \end{bmatrix}$$

with a column of ones in X.

It is a symmetric matrix.

Note that x_i refers to the *j*th column of *X*.

Heteroskedasticity

 $V(Y) = V \neq \sigma^2 I$ Is the *LS* estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity, $V(\hat{\beta}) = (X'X)^{-1}X'VX(X'X)^{-1}.$

Proof:

$$V(\hat{\beta}) = E(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}$$

$$= (X'X)^{-1}X'VX(X'X)^{-1}. \blacksquare$$

Suppose $\sum = V(\varepsilon)$ is a diagonal matrix. Then

$$X'\sum X=E\sum X_i\varepsilon_i^2X'_i.$$

Note that the cross products have expectation 0.

This suggests using $\sum X_i e_i^2 X'_i$.

So we can estimate standard errors under the assumption that V(y) is diagonal.

1. Goldfeld-Quandt test:

Suppose we suspect that σ_i^2 varies with x_i . Then reorder the observations in the order of x_i . Suppose N is even. If ε was observed, then

$$\frac{\varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_{N/2}^2}{\varepsilon_{\lfloor (n/2)+1 \rfloor}^2 + \varepsilon_{\lfloor (N/2)+2 \rfloor}^2 + \dots + \varepsilon_N^2} \sim F(N/2, N/2)$$

could be used.

We are tempted to use e_i , but we can't because the first $N/2 e_i$'s are not independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate *e* separately for each half of the sample with *K* parameters. The statistic is F((N/2) - K, (N/2) - K).

It turns out that this "works" better if you delete the middle N/3 observations.

Testing for heteroskedasticity (cont'd):

2. Breusch-Pagan test:

The disturbances ε_i are assumed to be normally and independently distributed with variance $\sigma_i^2 = h(z_i'\alpha)$ where *h* denotes a function, and z_i' is a $1 \times P$ vector of variables influencing heteroskedasticity.

Let Z be an $N \times P$ matrix with row vectors z'_i . Some of the variables in Z could be the same as the variables in X.

Regress e^2/σ_{ML}^2 on Z, including an intercept term.

Note that (sum of squares due to Z)/2 ~ $\chi^2(P-1)$ approximately. The factor 1/2 appears here since under normality the variance of ε^2/σ^2 is $2(E\varepsilon^4 = 3\sigma^4)$.

ロト (個) (注) (注) (注) つくの

An alternative approach (Koenker) drops normality and estimates the variance of e_i^2 directly by $N^{-1}\sum (e_i^2 - \hat{\sigma}^2)^2$. The resulting statistic can be obtained by regressing e^2 on z and looking at NR^2 from this regression.

Other tests are available for time series.

The moment generating function of a random variable x is $m(t) = E(\exp(tx))$; note m'(0) = Ex; $m''(0) = Ex^2$; etc. The MGF of the normal distribution $n(\mu, \sigma^2)$ is $m(t) = \exp(t\mu + t^2\sigma^2/2)$.

Proof:
let
$$c=(2\pi\sigma)^{-1/2}$$

$$m(t) = c \int \exp(tx) \exp(-1/2(x-\mu)^2/\sigma^2) dx$$

= $c \int \exp(-1/2(x-\mu-\sigma^2 t)^2/\sigma^2 + t\mu + \sigma^2 t^2/2) dx$
= $\exp(t\mu + \sigma^2 t^2/2).$

Testing Normality (cont'd)

Thus for the regression errors ε we have $E\varepsilon = 0$; $E\varepsilon^2 = \sigma^2$; $E\varepsilon^3 = 0$; $E\varepsilon^4 = 3\sigma^4$; $E\varepsilon^5 = 0$; etc.

It is easier to test the 3rd and 4th moment conditions than normality directly.

If we knew the $\varepsilon,$ it would be easy to come up with a χ^2 test.

In fact a test can be formed using the residuals e instead (and relying on asymptotic distibution theory). The test statistic is

$$n[\overline{((e/s)^3)^2}/6 + \overline{((e/s)^4} - 3)^2/24].$$

Which is χ^2 with 2 *df*.

This is the Kiefer/Salmon test (also called Jarque/Bera).