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Computation and Distribution of Constrained Estimator:

Consider the null hypothesis H0: R� = r , where R is q � k and r is q � 1.
We suppose there are genuinely q restrictions under H0, so rank (R) = q.

Let �̂ be the unconstrained estimator,

i.e., �̂ = (X 0X )�1X 0y .

Let b be the constrained estimator satisfying Rb = r . (Typically, R�̂ 6= r .)

Proposition:
b = �̂ + (X 0X )�1R 0[R(X 0X )�1R 0]�1(r � R�̂)
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Proof :
Let S(~b) = (y � X ~b)0(y � X ~b)� 2�(R~b � r).
The constrained estimator b satis�es the �rst order conditions (2�s cancel):
(1) �X 0y + X 0Xb � R 0� = 0
(2) Rb � r = 0
Thus b = �̂ + (X 0X )�1R 0�

Let�s eliminate �:
Rb = R�̂ + R(X 0X )�1R 0�
Since Rb = r ,
[R((X 0X )�1R 0]�1r = [R(X 0X )�1R 0]�1R�̂ + �.

Thus, � = [R(X 0X )�1R 0]�1(r � R�̂).
Substitute out � in the de�nition of b:
b = �̂ + (X 0X )�1R 0[R(X 0X )�1R 0]�1(r � R�̂) �
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Sampling distribution of b

First step is to �nd the mean and variance of b:

Proposition: Eb = �. (Under H0)

Proof :Substitute �̂ in the de�nition of b:
b = � + (X 0X )�1X 0"

+(X 0X )�1R 0[R(X 0X )�1R 0]�1[r � R� � R(X 0X )�1X 0"]
= � + [I � (X 0X )�1R 0[R(X 0X )�1R 0]�1R](X 0X )�1X 0",

using r = R�.
From this we see that Eb = �. �
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Proposition: V (b) � V (�̂).

Proof : Let A = R(X 0X )�1R 0.

Note that:
b � � = [I � (X 0X )�1R 0A�1R](X 0X )�1X 0".
V (b) = E (b � �)(b � �)0

= �2[I � (X 0X )�1R 0A�1R](X 0X )�1
[I � (X 0X )�1R 0A�1R]0,

since E""0 = �2I
= �2[(X 0X )�1 � 2(X 0X )�1R 0A�1R(X 0X )�1
+(X 0X )�1R 0A�1R(X 0X )�1R 0A�1R(X 0X )�1]

Using the de�nition of A, this becomes
V (b) = �2[(X 0X )�1 � (X 0X )�1R 0A�1R(X 0X )�1]

� V (�̂) = �2(X 0X )�1 (why?) �
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What is the relation to the Gauss-Markov theorem?

Why doesn�t this expression depend on r?

Proposition: Under normality, we have the complete sampling distribution
of b with the mean and the variance calculated above.

Estimation of �2:

What is the unbiased estimator under restriction?

What is the ML estimator?
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F Tests

Let e and e� be the vector of restricted and unrestricted residuals
respectively.

Proposition:
e 0e � e�0e� = (r � R�̂)0[R(X 0X )�1R 0]�1(r � R�̂)

Proof : e = y � Xb = y � X �̂ � X (b � �̂)
= e� � X (b � �̂)

) e 0e = e�0e� + (b � �̂)0X 0X (b � �̂)
) e 0e � e�0e� = (r � R�̂)0[R(X 0X )�1R 0]�1(r � R�̂) �
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Example: Consider y = �0 + �1x1 + �2x2 + " with the restriction
�1 + �2 = 2. If we substitute for �1, we get

y = �0 + (2� �2)x1 + �2x2 + "
y = �0 + 2x1 � �2x1 + �2x2 + "
) y � 2x1 = �0 + �2(x2 � x1) + "

Regress (y � 2x1) on a constant term and (x2 � x1), and get the sum
squared residuals from this restricted regression (e 0e).

Regress y on a constant term, x1 and x2, and get the sum squared
residuals from this unrestricted regression (e�0e�).

Compare the sums of squared residuals from these regressions.
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Dummy Variables

Here we de�ne a new variable D equal to 0 or 1 indicating absence or
presence of a characteristic.

This allows the intercept to di¤er.

Example: homeowners/renters, male/female, regulation
applies/regulation doesn�t apply, etc.
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Dummy Variable Trap:

Suppose X2 = 1 if the characteristic is present
= 0 if the characteristic is not present

and X3 = 1 if the characteristic is not present
= 0 if the characteristic is present.

Then X2 + X3 = 1 = X1 if the regression contains the constant term
X1 = 1 2 RN . .... And?
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Interactions between dummies for di¤erent characteristics:

Suppose X2 is the dummy variable for characteristic 1 and X3 is the
dummy variable for characteristic 2. Let X4 = X2 � X3 (elementwise).

That is, X4 = 1 if both characteristics are present.
= 0 if only one or none of the characteristics is present.

Then the (marginal) e¤ect of characteristic 1 is �2; e¤ect of charactersitic
2 is �3; e¤ect of both is �2 + �3 + �4.

This could be set up di¤erently. Although di¤erent set ups will give
di¤erent coe¢ cients, correct interpretation of these coe¢ cients will give
the same estimated e¤ects.
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Interactions with continuous regressors:
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Example

Suppose education is reported in grouped form:
0-8 years; 9-12years; 12+ years

How should we set up the dummy variables?

One temptation is to code

d = 0 if 0-8 years of educaction
= 1 if 9-12 years of eduction
= 2 if 12+ years of education

This is very restrictive and probably unsound.
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A better set up would be to use 2 dummies:

d1 = 1 if 0-8 years of education
= 0 else

d2 = 1 if 9-12 years of education
= 0 else

The �rst set up imposes that the e¤ect of having 12+ years of education
is twice the e¤ect of having 9-12 years of education. In general, class
variables with several classes require many dummies.
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Practical matters:

Often you will run across categorical variables - with no natural ordering.
It is usually appropriate to do a fequency distribution and form dummy
variables on that basis.

For example, suppose the variable is color, and you have out of a sample
of 100; 25 red, 5 yellow, 40 blue, 1 green, 4 purple, etc. (small numbers
for the remaining colors).
It is probably appropriate to make a dummy for red, one for blue, and use
�other�as the base.
Plotting residuals, especially for the �base�observations, will tell you if
this fails.
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Multicollinearity

The problem is lack of data information when X 0X is singular (recall
picture) or �nearly� singular.

If some X�s move together, it is di¢ cult to sort their separate e¤ects on y .
More data does help.

Other sources of information are useful. Purely �technical� remedies for
collinearity work by imposing arbitrary and sometimes hidden
�information�. Never use ridge regression in an economic application.

The problem of multicollinearity in K -variable regression is equivalent to
the problem of small sample size in estimating a mean.
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Micronumerosity

Goldberger gives an example that puts the problem in perspective.

Consider estimating a normal mean �. The usual estimator is the sample
mean with variance �2=N. This is a regression model, Ey = �1N ,
V (y) = �2IN .

When N is small, the sampling variance is large - �micronumerosity�.

Extreme micronumerosity occurs when N = 0. Of course, this is just
multicolinearity, since X 0X = N in the regression interpretation, and X 0X
singular is N = 0.
Near multicolinearity corresponds to small N.
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Multicollinearity: e¤ect on y_hat??

Example with n = 2 and x1 and x2 collinear. What happens in the full
rank case?
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