Economics 620, Lecture 5: The K-Varable Linear Model II

Nicholas M. Kiefer

Cornell University

Third assumption (Normality):

$$
\begin{aligned}
& y ; q\left(X \beta, \sigma^{2} I_{N}\right) \\
\Rightarrow & p(y)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{(N / 2)}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right)
\end{aligned}
$$

where N is the sample size.
The log likelihood function is $\ell\left(\beta, \sigma^{2}\right)=c-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)$.

Proposition: The LS estimator $\hat{\beta}$ is the ML estimator.

Proposition: The ML estimator for σ^{2} is

$$
\sigma_{M L}^{2}=e^{\prime} e / N
$$

Proof: To find the ML estimator for σ^{2}, we solve the FOC:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-X \beta)=0 \\
& \Rightarrow \sigma^{2}=(y-X \beta)^{\prime}(y-X \beta) / N
\end{aligned}
$$

Plugging in the MLE for β gives the MLE for σ^{2}
Proposition: The distribution of $\hat{\beta}$ given a value of σ^{2} is $q\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$. Proof: Since $\hat{\beta}$ is a linear combination of jointly normal variables, it is normal.

Fact: If A is an $N \times N$ idempotent matrix with rank r, then there exists an $N \times N$ matrix C with
$C^{\prime} C=I=C C^{\prime}$ (orthogonal)
$C^{\prime} A C=\Lambda$, where:

$$
\Lambda=\left[\begin{array}{c}
1 \ldots 0 \ldots 0 \\
0 \ldots 1 \ldots 0 \\
\ldots \ldots \ldots . \\
0 \ldots \ldots .0
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

C is the matrix whose columns are orthornormal eigenvectors of A.

Lemma: Let $z \sim q\left(0, I_{N}\right)$ and A be an $N \times N$ idempotent matrix with rank r. Then
$z^{\prime} A z \sim \chi^{2}(r)$.
Proof:
$z^{\prime} A z=z^{\prime} C C^{\prime} A C C^{\prime} z=\tilde{z} C^{\prime} A C \tilde{z}=\tilde{z}^{\prime} \Lambda \tilde{z}$, where $\tilde{z}^{\prime}=z^{\prime} C$.
But \tilde{z} is normal with mean zero and variance:
$E \tilde{z} \tilde{z}^{\prime}=E C^{\prime} z z^{\prime} C=C^{\prime}\left(E z z z^{\prime}\right) C=C^{\prime} C=I$.
So, $z^{\prime} A z=\tilde{z}^{\prime} \wedge \tilde{z}$ is the sum of squares of r standard normal variables, i.e., $z^{\prime} A z \sim \chi^{2}(r)$.

Proposition:

$$
\frac{N \sigma_{M L}^{2}}{\sigma^{2}} \sim \chi^{2}(N-K)
$$

Proof: Note that $\sigma_{M L}^{2}=e^{\prime} e / N=\varepsilon^{\prime} M \varepsilon / N$.

$$
\Rightarrow \frac{N \sigma_{M L}^{2}}{\sigma^{2}}=\frac{\varepsilon^{\prime} M \varepsilon}{\sigma^{2}} \sim \chi^{2}(N-K),
$$

using the previous lemma with $z=\varepsilon / \sigma$. \square
Proposition: $\operatorname{cov}\left(\sigma_{M L}^{2}, \hat{\beta}\right)=0$

$$
\text { Proof: } \begin{aligned}
E e(\hat{\beta}-\beta)^{\prime} & =E M \varepsilon\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right)^{\prime} \\
& =E M \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2} M X\left(X^{\prime} X\right)^{-1}=0
\end{aligned}
$$

$\Rightarrow e$ and $\hat{\beta}$ are independent.
(This depends on normality: zero covariance \Rightarrow independence) $\Rightarrow e^{\prime} e$ and $\hat{\beta}$ are independent. \square

So, we have the complete sampling distribution of $\hat{\beta}$ and $\sigma_{M L}^{2}$.
Note on t-testing:
We now that $\frac{\hat{\beta}-\beta_{k}}{\sigma_{\beta_{k}}} \sim q(0,1)$ where σ_{β}^{2}, is the $k^{\text {th }}$ diagonal element of $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
Estimating σ^{2} by s^{2} gives a statistic which is $t(N-K)$, using the same argument as in simple regression.

Simultaneous Restrictions

In multiple regression we can test several restrictions simultaneously. Why is this useful?

Recall our expenditure system:

$$
\begin{aligned}
\ln z_{j} & =\ln \frac{a_{j}}{\sum a_{\ell}}+\ln m-\ln p_{j} \\
\text { or } y & =\beta_{0}+\beta_{1} \ln m+\beta_{2} \ln p_{j}+\varepsilon
\end{aligned}
$$

We are interested in the hypothesis $\beta_{1}=1$ and $\beta_{2}=-1$. A composite hypothesis like this cannot be tested with the tools we have developed so far.

Lemma: Let $z \sim q(0, I)$, and A and B be symmetric idempotent matrices such that $A B=0$.

Thus A and B are projections to orthogonal spaces. Then $a=z^{\prime} A z$ and $b=z^{\prime} B z$ are independent.

Proof:
$a=z^{\prime} A^{\prime} A z=$ sum of squares of $A z$
$b=z^{\prime} B^{\prime} B z=$ sum of squares of $B z$.
Note that both $A z$ and $B z$ are normal with mean zero.
$\operatorname{cov}(A z, B z)=E A z z^{\prime} B^{\prime}=A E z z^{\prime} B^{\prime}=A B^{\prime}=0$
We are done. (why?)
Note: A similar argument shows that $z^{\prime} A z$ and $L z$ are independent if $A L^{\prime}=0$.

Testing

Definition: Suppose $v \sim \chi^{2}(k)$ and $u \sim \chi^{2}(p)$ are independent. Then

$$
F=\frac{v / k}{u / p} \sim F(k, p)
$$

Lemma: Let M and M^{*} be idempotent with $M M^{*}=M^{*}, e=M \varepsilon$, $e^{*}=M^{*} \varepsilon, \varepsilon \sim q\left(0, \sigma^{2} I\right)$.

Then
$F=\frac{\left(e^{\prime} e-e^{*} e^{*}\right) /\left(\operatorname{tr} M-\operatorname{tr} M^{*}\right)}{e^{*} e^{*} / \operatorname{tr} M^{*}} \sim F\left(\operatorname{tr} M-\operatorname{tr} M^{*}, \operatorname{tr} M^{*}\right)$.

Proof: $\sigma^{-2} \operatorname{tr} M^{*}$ times the denominator is $\chi^{2}\left(t r M^{*}\right)$
As for the numerator:
$e^{\prime} e-e^{* \prime} e^{*}=\varepsilon^{\prime} M^{\prime} M \varepsilon-\varepsilon^{\prime} M^{* \prime} M^{*} \varepsilon=\varepsilon^{\prime}\left(M-M^{*}\right) \varepsilon$.
Note that: $\left(M-M^{*}\right)\left(M-M^{*}\right)=M^{2}-M^{*} M-M M^{*}+M^{* 2}=M-M^{*}$ (idempotent).
So $e^{\prime} e-e^{* \prime} e^{*}=\varepsilon^{\prime}\left(M-M^{*}\right) \varepsilon$.
Thus, the numerator upon multiplication by $\sigma^{-2} \operatorname{tr}\left(M-M^{*}\right)$ is distributed as

$$
\chi^{2}\left(\operatorname{tr}\left(M-M^{*}\right)\right)
$$

It only remains to show that the numerator and the denominator are independent.
But $\left(M-M^{*}\right) M^{*}=0$, so we are done.

Interpretation:

$R\left[M^{*}\right] \subset R[M]$, i.e.
$e^{\prime} e$ is a restricted sum of squares
$e^{* \prime} e^{*}$ is an unrestricted sum of squares.
F looks at the normalized reduction in "fit" caused by the restriction.
What sort of restrictions meet the conditions of the lemma?
Proposition: Let X be $N \times H$ and X^{*} be $N \times K$ where $H<K$. $\left(R[X] \subset R\left[X^{*}\right]\right)$.

Suppose $X=X^{*} A \quad(A$ is $K \times H)$.
Let $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ and $M^{*}=I-X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime}$.
Then M and M^{*} are idempotent and $M M^{*}=M^{*}$.

Example 1: Leaving out variables

Consider $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$ where X_{1} is $N \times K_{1}$ and X_{2} is $N \times K_{2}$.
Hypothesis: $\beta_{2}=0$, i.e., X_{2} is not in the model.
Using the notation from the previous proposition, $X=X_{1}$ and $X^{*}=\left[X_{1} X_{2}\right]$

$$
X=X^{*} A, A=\left[\begin{array}{l}
I \\
0
\end{array}\right]
$$

Note that: $\operatorname{tr} M=N-K_{1}, \operatorname{tr} M^{*}=N-K_{1}-K_{2}$.

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K_{2}}{e^{* \prime} e^{*} /\left(N-K_{1}-K_{2}\right)} .
$$

Thus:
e is from the regression of y on $X=X_{1}$, and
e^{*} is from the regression of y on $X^{*}=\left[X_{1} X_{2}\right]$.
The degrees of freedom in the numerator is the number of restrictions.

Example 2: Testing the equality of regression coefficients

 in two samples.Consider
$y_{1}=X_{1} \beta_{1}+\varepsilon_{1}$ where y_{1} is $N_{1} \times 1$ and X_{1} is $N_{1} \times K$, and $y_{2}=X_{2} \beta_{2}+\varepsilon_{2}$ where y_{2} is $N_{2} \times 1$ and X_{2} is $N_{2} \times K$.

Hypothesis: $\beta_{1}=\beta_{2}$
Combine the observations from the samples:
$y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right], X^{*}=\left[\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right], \beta=\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]$

The unrestricted model is
$y=X^{*} \beta+\varepsilon=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$.

$$
X=X^{*} A, A=\left[\begin{array}{l}
1 \\
I
\end{array}\right]
$$

Note that $\operatorname{trM}^{*}=N_{1}+N_{2}-2 K$ and

$$
\operatorname{tr} M=N_{1}+N_{2}-K
$$

Run the restricted and unrestricted regressions, and calculate

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K}{e^{* \prime} e^{*} /\left(N_{1}+N_{2}-2 K\right)} .
$$

Example 3: Testing the equality of a subset of coefficients

Consider

$$
y_{1}=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon_{1}
$$ where X_{1} is $N_{1} \times K_{1}$ and X_{2} is $N_{1} \times K_{2}$

and
$y_{2}=X_{3} \beta_{3}+X_{4} \beta_{4}+\varepsilon_{2}$ where X_{3} is $N_{2} \times K_{1}$ and X_{4} is $N_{2} \times K_{4}$

Hypothesis: $\beta_{1}=\beta_{3}$
The unrestricted regression is

$$
\begin{aligned}
y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]= & {\left[\begin{array}{cccc}
X_{1} & X_{2} & 0 & 0 \\
0 & 0 & X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]+\varepsilon } \\
& =X^{*} \beta+\varepsilon
\end{aligned}
$$

With the restriction, we have

$$
\begin{aligned}
y & =\left[\begin{array}{ccc}
X_{1} & X_{2} & 0 \\
X_{3} & 0 & X_{4}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]+\varepsilon \\
& =X \tilde{\beta}+\varepsilon . \\
X & =X^{*} A, A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, the test statistics is:

$$
F=\frac{\left(e^{\prime} e-e^{* \prime} e^{*}\right) / K_{1}}{e^{*^{\prime}} e^{*} /\left(N_{1}+N_{2}-2 K_{1}-K_{2}-K_{4}\right)} .
$$

Another way to look at the condition of the lemma:

Let β^{*} be the unrestricted coefficient vector and β be the restricted coefficient vector.

The lemma requires that there exist a matrix A such that $\beta^{*}=A \beta$. What kinds or restrictions cannot be brought into this framework??

Consider $E y=X_{1} \beta_{1}$ versus $E y=X_{2} \beta_{2}$.
The combined model is not in consideration.

