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Consider the system

y1 = �+ �x1 + "1
y2 = �+ �x2 + "2

::::::::

::::::::

yN = �+ �xN + "N

or in matrix form
y = X�� + "

where y is N � 1, X is N � 2, � is 2� 1, and " is N � 1.
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K-Variable Linear Model

X =

2664
1 x1
1 x2
: .
1 xN

3775 , �� = � ��
�
:

Good statistical practice requires inclusion of the column of ones.

Consider the general model

y = X�� + "

Convention: y is N � 1, X is N � K , � is K � 1, and " is N � 1.

X =

2664
1 x21::::xK 1
1 x22::::xK 2
: : :::: :
1 x2N ::::xKn

3775 , � =
266664
�1
�2
:
:
�K

377775 :
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More on the Linear Model

A typical row looks like:
yi = �1 + �2x2i + �3x3i + :::+ �K xKi + "i

The Least Squares Method:
First Assumption: Ey = X�
S(b) = (y � Xb)0(y � Xb)

= y 0y � 2b0X 0y + b0X 0Xb

Normal Equations
X 0X �̂ � X 0y = 0
These equations always have a solution. (Clear from geometry to come)
If X 0X is invertible
�̂ = (X 0X )�1X 0y .
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More on the Linear Model

Proposition: �̂ is a minimizer.
Proof : Let b be any other K -vector.
(y � Xb)0(y � Xb)
= (y � X �̂ + X (�̂ � b))0(y � X �̂ + X (�̂ � b))
= (y � X �̂)0(y � X �̂) + (�̂ � b)0X 0X (�̂ � b)
� (y � X �̂)(y � X �̂). (Why?)

De�nition: e = y � X �̂ is the vector of residuals.

Note: Ee = 0 and X 0e = 0.

Proposition: The LS estimator is unbiased.

Proof : E �̂ = E [(X 0X )�1X 0y ]
= E [(X 0X )�1X 0(X� + ")] = �
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Geometry of Least Squares

Consider y = X� + " with

y =
�
y1
y2

�
, X =

�
x1
x2

�
:

De�nition: The space spanned by matrix X is the vector space which
consists of all linear combinations of the column vectors of X .

De�nition: X (X 0X )�1X 0y is the orthogonal projection of y to the space
spanned by X .

Proposition: e is perpendicular to X , i.e., X 0e = 0.

Proof :
e = y � X �̂ = y � X (X 0X )�1X 0y

e = (I � X (X 0X )�1X 0)y
) X 0e = (X 0 � X 0)y = 0. �
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Geometry of Least Squares (cont�d)

Thus the equation y = X �̂ + e gives y as the sum of a vector in R[X ] and
a vector in N[X 0].

Common (friendly) projection matrices:

1. The matrix which projects to the space orthogonal to the space
spanned by X (i.e. to N[X 0] is

M = I � X (X 0X )�1X 0:

Note: e = My . If X is full column rank, M has rank (N � K ).

2. The matrix which projects to the space spanned by X is

I �M = X (X 0X )�1X 0:

Note: ŷ = y � e = y �My = (I �M)y . If X is full column rank,
(I �M) has rank K .
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Example in R2

yi = xi� + "i i = 1; 2

What is the case of singular X 0X?
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Properties of projection matrices

1. Projection matrices are idempotent.
I.G. (I �M)(I �M) = (I �M):

Proof : (I �M)(I �M)
= (X (X 0X )�1X 0)(X (X 0X )�1X 0)
= X (X 0X )�1X 0 = (I �M) �

2. Idempotent matrices have eigenvalues equal to zero or one.

Proof : Consider the characteristic equation
Mz = �z ) M2z = M�z = �2z .
Since M is idempotent, M2z = Mz .
Thus, �2z = �z , which implies that � is either 0 or 1: �
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Properties of projection matrices

3. The number of nonzero eigenvalues of a matrix is equal to its rank.
) For idempotent matrices, trace = rank.

More assumptions to the K -variable linear model:

Second assumption: V (y) = V (") = �2IN where y and " are N-vectors.
With this assumption, we can obtain the sampling variance of �̂:

Proposition: V (�̂) = �2(X 0X )�1

Proof :
�̂ = (X 0X )�1X 0y
= (X 0X )�1X 0X� + (X 0X )�1X 0"

hence
�̂ = � + (X 0X )�1X 0"
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cont�d

V (�̂) = E (�̂ � E �̂)(�̂ � E �̂)0
= E (X 0X )�1X 0""0X (X 0X )�1

V (�̂) = (X 0X )�1X 0(E""0)X (X 0X )�1

= �2(X 0X )�1 �

Gauss-Markov Theorem: The LS estimator is BLUE.

Proof : Consider estimating c 0� for some c . A possible estimator is c 0�̂
with variance �2c 0(X 0X )�1c .
An alternative linear unbiased estimator: b = a0y .
Eb = a0Ey = a0X�.
Since both c 0�̂ and b are unbiased, a0X = c 0.
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Gauss-Markov Theorem(cont�d)

Thus, b = a0y = a0(X� + ")
= a0X� + a0" = c 0� + a0".

Hence, V (b) = �2a0a:

Now, V (c 0�̂) = �2a0X (X 0X )�1X 0a since c 0 = a0X .

So V (b)� V (c 0�̂) = �2a0Ma, p.s.d.

Hence, V (b) � V (c 0�̂) �
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Estimation of Variance

Proposition: s2 = e 0e=(N � K ) is an unbiased estimator for �2.

Proof : e = y � X �̂ = My = M")
e 0e = "0M"

Ee 0e = E"0M" = E tr "0M" (Why?)
= tr E"0M" = tr EM""0 (important trick)
= tr M E""0 = �2 tr M = �2(N � K )

) s2 = e 0e=(N � K ) is unbiased for �2: �
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Fit: Does the Regression Model Explain the Data?

We will need the useful idempotent matrix
A = I � 1(101)�110 = I � 110=N which sweeps out means.

Here 1 is an N-vector of ones.

Note that AM = M when X contains a constant term.

De�nition: The correlation coe¢ cient in the K -variable case is
R2 = (Sum of squares due to X )/(Total sum of squares)
= 1� (e 0e=y 0Ay).
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More Fit

Using A, y 0Ay =:
NP
i=1
(yi � �y)2

y 0Ay = (Ay)0(Ay) = (Aŷ + Ae)0(Aŷ + Ae)
= ŷ 0Aŷ + e 0Ae since ŷ 0e = 0

Thus, y 0Ay = ŷ 0Aŷ + e 0e since Ae = e:

Scaling yields:

1 =
ŷ 0Aŷ
y 0Ay

+
e 0e
y 0Ay

What are the two terms of this splitup?
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More Fit

R2 gives the fraction of variation explained by X :

R2 = 1� (e 0e=y 0Ay):

Note: The adjusted squared correlation coe¢ cient is given by

�R2 = 1� e 0e=(N � K )
y 0Ay=(N � 1)

(Why might this be preferable?)
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Reporting

Always report characteristics of the sample, i.e. means, standard
deviations, anything unusual or surprising, how the data set is collected
and how the sample is selected.

Report �̂ and standard errors (not t-statistics).

The usual format is

�̂

(s:e: of �̂)

Specify S2 or �2ML:
Report N and R2:

Plots are important. For example, predicted vs. actual values or predicted
and actual values over time in time series studies should be presented.
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Comments on Linearity

Consider the following argument: Economic functions don�t change
suddenly. Therefore they are continuous. Thus they are di¤erentiable
and hence nearly linear by Taylor�s Theorem.

This argument is false (but irrelevant).
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NOTE ON THE GAUSS-MARKOV THEOREM

Consider estimation of a mean � based on an observation X .

Assume: X � F andZ
x dF = �;

Z
x2 dF = �2 + �2: (�)

Suppose that the estimator for � is h(x). Unbiasedness implies thatZ
h(x) dF = �:

Theorem: The only function h unbiased for all F and � satisfying (�) is
h(x) = x .
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Proof : Let h(x) = x + �(x). ThenZ
�(x) dF = 0 for all F .

Suppose, on the contrary, that �(x) > 0 on some set A. Let � 2 A and
F = �� (the distribution assigning point mass to x = �).

Then (�) is satis�ed andZ
h(x)d�� = �+ �(�) 6= �;

which is a contradiction.

Argument is the same if �(x) < 0. This shows that �(x) = 0:�

The logic is that if the estimator is nonlinear, we can choose a distribution
so that it is biased.
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