Economics 620, Lecture 4: The K-Varable Linear Model I

Nicholas M. Kiefer

Cornell University

Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I

Consider the system

$$y_1 = \alpha + \beta x_1 + \varepsilon_1$$

$$y_2 = \alpha + \beta x_2 + \varepsilon_2$$

$$y_N = \alpha + \beta x_N + \varepsilon_N$$

or in matrix form

$$y = X\beta^* + \varepsilon$$

where y is $N \times 1$, X is $N \times 2$, β is 2×1 , and ε is $N \times 1$.

K-Variable Linear Model

$$X = \left[egin{array}{ccc} 1 & x_1 \ 1 & x_2 \ & & \cdot \ 1 & x_N \end{array}
ight]$$
 , $eta^* = \left[egin{array}{c} lpha \ eta \end{array}
ight]$.

Good statistical practice requires inclusion of the column of ones. Consider the general model

$$y = X\beta^* + \varepsilon$$

Convention: y is $N \times 1$, X is $N \times K$, β is $K \times 1$, and ε is $N \times 1$.

$$X = \begin{bmatrix} 1 & x_{21} \dots x_{K1} \\ 1 & x_{22} \dots x_{K2} \\ \vdots & \vdots & \ddots \\ 1 & x_{2N} \dots x_{Kn} \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_K \end{bmatrix}.$$

More on the Linear Model

A typical row looks like: $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \varepsilon_i$

The Least Squares Method:

First Assumption:
$$Ey = X\beta$$

 $S(b) = (y - Xb)'(y - Xb)$
 $= y'y - 2b'X'y + b'X'Xb$

Normal Equations

 $X'X\hat{\beta} - X'y = 0$

These equations *always* have a solution. (Clear from geometry to come) If X'X is invertible $\hat{\beta} = (X'X)^{-1}X'y$.

More on the Linear Model

Proposition: $\hat{\beta}$ is a minimizer. Proof: Let *b* be any other *K*-vector. (y - Xb)'(y - Xb) $= (y - X\hat{\beta} + X(\hat{\beta} - b))'(y - X\hat{\beta} + X(\hat{\beta} - b))$ $= (y - X\hat{\beta})'(y - X\hat{\beta}) + (\hat{\beta} - b)'X'X(\hat{\beta} - b)$ $\ge (y - X\hat{\beta})(y - X\hat{\beta}).$ (Why?)

Definition: $e = y - X\hat{\beta}$ is the vector of residuals.

Note: Ee = 0 and X'e = 0.

Proposition: The LS estimator is unbiased.

Proof:
$$E\hat{\beta} = E[(X'X)^{-1}X'y]$$

= $E[(X'X)^{-1}X'(X\beta + \varepsilon)] = \beta$

Geometry of Least Squares

Consider $y = X\beta + \varepsilon$ with

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Definition: The space spanned by matrix X is the vector space which consists of all linear combinations of the column vectors of X.

Definition: $X(X'X)^{-1}X'y$ is the orthogonal projection of y to the space spanned by X.

Proposition: *e* is perpendicular to *X*, i.e., X'e = 0.

Proof:

$$e = y - X\hat{\beta} = y - X(X'X)^{-1}X'y$$

$$e = (I - X(X'X)^{-1}X')y$$

$$\Rightarrow X'e = (X' - X')y = 0. \blacksquare$$

Geometry of Least Squares (cont'd)

Thus the equation $y = X\hat{\beta} + e$ gives y as the sum of a vector in R[X] and a vector in N[X'].

Common (friendly) projection matrices:

1. The matrix which projects to the space orthogonal to the space spanned by X (i.e. to N[X'] is

$$M = I - X(X'X)^{-1}X'.$$

Note: e = My. If X is full column rank, M has rank (N - K).

2. The matrix which projects to the space spanned by X is

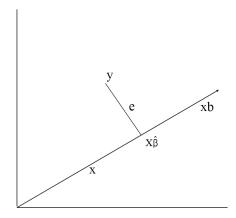
$$I-M=X(X'X)^{-1}X'.$$

Note: $\hat{y} = y - e = y - My = (I - M)y$. If X is full column rank, (I - M) has rank K.

★週 → ★ 国 → ★ 国 → 一 国

Example in R^2

$$y_i = x_i\beta + \varepsilon_i$$
 $i = 1, 2$



What is the case of singular X'X?

8 / 20

1. Projection matrices are *idempotent*. I.G. (I - M)(I - M) = (I - M).

Proof:
$$(I - M)(I - M)$$

= $(X(X'X)^{-1}X')(X(X'X)^{-1}X')$
= $X(X'X)^{-1}X' = (I - M)$

2. Idempotent matrices have eigenvalues equal to zero or one.

Proof: Consider the characteristic equation $Mz = \lambda z \Rightarrow M^2 z = M\lambda z = \lambda^2 z$. Since M is idempotent, $M^2 z = Mz$. Thus, $\lambda^2 z = \lambda z$, which implies that λ is either 0 or 1.

Properties of projection matrices

3. The number of nonzero eigenvalues of a matrix is equal to its rank. \Rightarrow For idempotent matrices, trace = rank.

More assumptions to the *K*-variable linear model:

Second assumption: $V(y) = V(\varepsilon) = \sigma^2 I_N$ where y and ε are N-vectors. With this assumption, we can obtain the sampling variance of $\hat{\beta}$.

Proposition:
$$V(\hat{eta})=\sigma^2(X'X)^{-1}$$

Proof:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} \\ = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon}$$

hence

$$\hat{\beta} = \beta + (X'X)^{-1}X'\varepsilon$$

$$V(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})'$$

= $E(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}$
 $V(\hat{\beta}) = (X'X)^{-1}X'(E\varepsilon\varepsilon')X(X'X)^{-1}$
= $\sigma^2(X'X)^{-1}$

Gauss-Markov Theorem: The LS estimator is BLUE.

Proof: Consider estimating $c'\beta$ for some c. A possible estimator is $c'\hat{\beta}$ with variance $\sigma^2 c'(X'X)^{-1}c$. An alternative *linear unbiased* estimator: b = a'y. $Eb = a'Ey = a'X\beta$. Since both $c'\hat{\beta}$ and b are unbiased, a'X = c'.

Thus,
$$b = a'y = a'(X\beta + \varepsilon)$$

= $a'X\beta + a'\varepsilon = c'\beta + a'\varepsilon$.

Hence, $V(b) = \sigma^2 a' a$.

Now,
$$V(c'\hat{eta}) = \sigma^2 a' X(X'X)^{-1} X' a$$
 since $c' = a' X$.

So
$$V(b) - V(c'\hat{\beta}) = \sigma^2 a' M a$$
, p.s.d.

Hence, $V(b) \geq V(c'\hat{\beta}) \blacksquare$

æ

- 4 同 6 4 日 6 4 日 6

Proposition: $s^2 = e'e/(N - K)$ is an unbiased estimator for σ^2 .

Proof:
$$e = y - X\hat{\beta} = My = M\varepsilon \Rightarrow$$

 $e'e = \varepsilon'M\varepsilon$

$$Ee'e = E\varepsilon'M\varepsilon = E \ tr \ \varepsilon'M\varepsilon \ (Why?)$$

= tr $E\varepsilon'M\varepsilon = tr \ EM\varepsilon\varepsilon' \ (important \ trick)$
= tr $M \ E\varepsilon\varepsilon' = \sigma^2 \ tr \ M = \sigma^2(N - K)$

$$\Rightarrow s^2 = e'e/(N-K)$$
 is unbiased for σ^2 .

2

イロト イポト イヨト イヨト

We will need the useful idempotent matrix $A = I - 1(1'1)^{-1}1' = I - 11'/N$ which sweeps out means.

Here 1 is an N-vector of ones.

Note that AM = M when X contains a constant term.

Definition: The correlation coefficient in the K-variable case is $R^2 = (\text{Sum of squares due to } X)/(\text{Total sum of squares})$ = 1 - (e'e/y'Ay).

More Fit

Using A,
$$y'Ay =: \sum_{i=1}^{N} (y_i - \bar{y})^2$$

 $y'Ay = (Ay)'(Ay) = (A\hat{y} + Ae)'(A\hat{y} + Ae)$
 $= \hat{y}'A\hat{y} + e'Ae$ since $\hat{y}'e = 0$

Thus,
$$y'Ay = \hat{y}'A\hat{y} + e'e$$
 since $Ae = e$.

Scaling yields:

$$1 = \frac{\hat{y}'A\hat{y}}{y'Ay} + \frac{e'e}{y'Ay}$$

What are the two terms of this splitup?

æ

< A

∃ ► < ∃ ►</p>

 R^2 gives the fraction of variation explained by X:

$$R^2 = 1 - (e'e/y'Ay).$$

Note: The adjusted squared correlation coefficient is given by

$$ar{R}^2 = 1 - rac{e'e/(N-K)}{y'Ay/(N-1)}$$

(Why might this be preferable?)

Reporting

Always report characteristics of the sample, i.e. means, standard deviations, anything unusual or surprising, how the data set is collected and how the sample is selected.

Report $\hat{\beta}$ and standard errors (*not t*-statistics).

The usual format is

$$\hat{\beta}$$

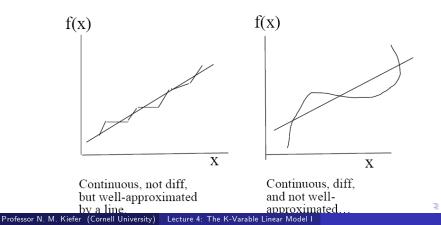
(s.e. of $\hat{\beta}$)

Specify S^2 or σ^2_{ML} . Report N and R^2 .

Plots are important. For example, predicted vs. actual values or predicted and actual values over time in time series studies should be presented.

Consider the following argument: Economic functions don't change suddenly. Therefore they are continuous. Thus they are differentiable and hence nearly linear by Taylor's Theorem.

This argument is false (but irrelevant).



18 / 20

NOTE ON THE GAUSS-MARKOV THEOREM

Consider estimation of a mean μ based on an observation X.

Assume: $X \sim F$ and

$$\int x \ dF = \mu, \ \int x^2 \ dF = \mu^2 + \sigma^2. \quad (*)$$

Suppose that the estimator for μ is h(x). Unbiasedness implies that

$$\int h(x) \ dF = \mu.$$

Theorem: The only function h unbiased for **all** F and μ satisfying (*) is h(x) = x.

Proof: Let $h(x) = x + \phi(x)$. Then

$$\int \phi(x) \ dF = 0 \text{ for all } F.$$

Suppose, on the contrary, that $\phi(x) > 0$ on some set A. Let $\mu \in A$ and $F = \delta_{\mu}$ (the distribution assigning point mass to $x = \mu$).

Then (*) is satisfied and

$$\int h(x)d\delta_{\mu} = \mu + \phi(\mu) \neq \mu,$$

which is a contradiction.

Argument is the same if $\phi(x) < 0$. This shows that $\phi(x) = 0$.

The logic is that if the estimator is nonlinear, we can choose a distribution so that it is biased.