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�̂ and �̂ are the LS estimators

ŷi = �̂+ �̂xi are the estimated values

The Correlation Coe¢ cient:

r =
P
(xi � �x)(yi � �y)pP
(xi � �x)2

P
(yi � �y)2

:

R2 = (squared) correlation between y and ŷ

Note: ŷ is a linear function of x .

So corr(y ; ŷ) = jcorr(y ; x)j:
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Correlation

Proposition: �1 < r < 1

r2 =

�P
(xi��x)(yi��y )

�2P
(xi��x)2

P
(yi��y )2

:

Use Cauchy-Schwartz

(
P
xiyi )2 �

P
x2i
P
y2i

) r2 � 1) �1 � r � 1

Proposition: � and r have the same sign.

Proof:

�̂ =

P
(xi � �x)yiP
(xi � �x)2

= r

pP
(yi � �y)2pP
(xi � �x)2
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Correlation cont�d.

P
e2i =

P
(yi � �y)2 � �̂

2P
(xi � �x)2

SSR = TSS - SS explained by x

Proposition:

r2 = 1� SSR
TSS

= 1�
P
e2iP

(yi � �y)2

Proof: P
e2iP

(yi � �y)2
= 1� �̂2

P
(xi � �x)2P
(yi � �y)2

= 1� r2

) r2 = 1�
P
e2iP

(yi � �y)2
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Warning: Zero Correlation does not imply Independence

Variables are completely dependent, correlation is zero. Correlation is a
measure of linear dependence.
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The Likelihood Function

A complete speci�cation of the model

Conditional distribution of observables

Conditional on regressors x �exogenous variables� - variables determined
outside the model

Conditional on parameters P(y jx ; �; �; �2)

Previously, speci�ed only mean and maybe variance

Incompletely speci�ed = �semiparametric�

Point estimate: MLE � intuition

Details, asy. justi�cation lecture 9.
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Maximum Likelihood Estimators

Assumptions: Normality

p(y jx) = N(�+ �x ; �2)

=
1p
2��2

exp

 
�1
2

�
y � �� �x

�

�2!

Likelihood Function:

L(�; �; �2) =
Qn
i=1(p(yi jxi )

= (2��2)(�n=2) exp
�
�1
2�2

Pn
i=1(yi � �� �xi )

2
�

The maximum likelihood (ML) estimators maximize L. The log likelihood
function is

`(�; �; �2) = �n
2
ln(2�)� n

2
ln�2 � 1

2�2
Pn
i=1(yi � �� �xi )

2
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Maximum Likelihood cont�d.

Proposition: The LS estimators are also the ML estimators. What is the
maximum in �2?

�2ML =
Pn
i=1(yi � �̂� �̂xi )2=n

Why?
@`
@�2

= � n
2�2 +

1
2�4
Pn
i=1(yi � �� �xi )2

) �2ML =
1
n

Pn
i=1(yi � �̂� �̂xi )2

Is this a maximum in �?

@2`
@(�2)2

= n
2�4 �

1
�6

P
(yi � �� �xi )2 = �n

2�4 < 0
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Distribution of Estimators

These are linear combinations of normal random variables, hence they are
normal. The means and variances have already been obtained:

Distribution of s2 and �2ML

Fact:
P
e2 can be written as a sum of squares of (n � 2) independent

normal random variables with means zero and variances �2.

Proposition: s2 is unbiased and Vs2 = 2�4=(n � 2).

Proof : Note that (n � 2)s2=�2 is distributed as �2(n � 2)
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More Distributions

) E (s2=�2)(n � 2) = (n � 2)) E (s2) = �2

) V (s2=�2)(n � 2) = 2(n � 2)
so V (s2) = 2�4=(n � 2)

Proposition: s2 has higher variance than �2ML

Proof : Note that n�
2
ML
�2

is distributed as

�2(n � 2)
) E�2ML =

�2(n�2)
n

) V
�
n�2ML
�2

�
= 2(n � 2)) V (�2ML) =

2�4(n�2)
n2

) V (s2)
V (�2ML)

= 1=(n�2)
(n�2)n2 =

n2
(n�2)2 > 1
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Inference

�̂ � N(�; �2�) where �2� = �2P
(xi��x)2

) �̂��
��

� n(0; 1)

De�nition: A 95% con�dence interval for �̂ is given by (�̂ � z�0:025��)
where z is standard normal.

Problem: The variance is unknown.

Fact: If z � n(0; 1) and v � �2(k) and they are independent, then
t = zp

v=k
is distributed as t(k).

Proposition:
�̂��

s=
qP

(xi��x)2
� t(n � 2)
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Proof:

(�̂��)
qP

(xi��x)2
� � n(0; 1)

s2
�2
(n � 2) � �2(n � 2)

(�̂��)
rP

(xi��x)2

�
s=� = (�̂��)

s=
qP

(xi��x)2
� t(n � 2)

Independence?

E (�̂ � �)ej = E [(�̂ � �)(ej � �e)]
= E [(�̂ � �)((�� �̂) + (� � �̂)xj + "j

�(�� �̂)� (� � �̂)�x � �")]
= [(�̂ � �)(�(�̂ � �)(xj � �x) + ("j � �"))]
= �(xj � �x)E [(�̂ � �)2]

+E [(�̂ � �)("j � �")]

=
��2(xj � �x)P
(xi � �x)2

+ E
("j � �")

P
(xi � �x)"iP

(xi � �x)2
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Continuation of independence argument

E ("j��")
P
(xi��x)"iP

(xi��x)2
=

�2(xj��x)P
(xi��x)2

� E �"
P
(xi��x)"iP
(xi��x)2

:

E �"
P
(xi��x)"iP
(xi��x)2

= 0:

Thus,

E (�̂ � �)ej = 0:
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Violations of Assumptions

I. Eyi = �+ xi�

II. V (yi jxi ) = V ("i ) = �2

The alternative is �2i di¤erent across observations (heteroskedasticity).
Is the LS estimator unbiased? Is it BLUE?

If the �i are known we can run the �transformed�regression, and will get
best linear unbiased estimates and correct standard errors.
wi = 1=�i , let wiyi = �wi + �xiwi + "iwi .
Ewiyi = �wi + �xiwi and V (wiyi ) = V ("iwi ) = 1

The Gauss-Markov Theorem tells that LS is BLUE in the transformed
model.
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Heteroskedasticity continued

The LS estimator in the transformed model is
�̂w =

P
(xiwi�xw )wi yiP
(xiwi�xw )2

6= �̂
with
V (�̂) =

P
(xi��x)2�2i�P
(xi��x)2

�2
Note: The variance of �w is less than the variance of b�:
�Heteroskedasticity Consistent� standard errors:

V (�̂) = E
�P

(xi��x)"iP
(xi��x)2

�2
= E

" P
(xi��x)2"2i�P
(xi��x)2

�2
#

insert e for " and remove the expectation.
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More on Heteroskedasticity

Essentially this works because
P
ê2i =n is a reasonable estimator forP

�2i =n, although of course, ê
2
i is not a good estimator for �

2
i :

Testing for heteroskedasticity :
Split the sample; regress e2 on stu¤

III. E"i"j = 0

The alternative is E"i"j 6= 0
Is the LS estimator unbiased? Is it BLUE?
Testing for correlated errors:
We need a hypothesis about the correlation.
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More (last) on violations of assumptions

IV. Normality
E (yi jxi ) = �+ �xi ; V (yi jxi ) = �2 but "i � f (") 6= N(0; �2)

The usual suspect is a heavy-tailed distribution. Is the LS estimator
unbiased? Is it BLUE?

Example:
f (") = 1

2� exp (� j"=�j)
The variance of the ML estimator is half that of the LS estimator
asymptotically. The minimum absolute deviation (MAD) estimator works.
It is a robust estimator.
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