Economics 620, Lecture 3: Simple Regression II

Nicholas M. Kiefer

Cornell University

 $\hat{\alpha}$ and $\hat{\beta}$ are the LS estimators

 $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$ are the estimated values

The Correlation Coefficient:

$$r=\frac{\sum(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum(x_i-\bar{x})^2\sum(y_i-\bar{y})^2}}.$$

 $R^2 = ($ squared) correlation between y and \hat{y}

Note: \hat{y} is a linear function of x.

So
$$corr(y, \hat{y}) = |corr(y, x)|$$
.

Correlation

Proposition: -1 < r < 1

$$r^{2} = rac{\left(\sum(x_{i}-ar{x})(y_{i}-ar{y})
ight)^{2}}{\sum(x_{i}-ar{x})^{2}\sum(y_{i}-ar{y})^{2}}.$$

Use Cauchy-Schwartz

$$(\sum x_i y_i)^2 \le \sum x_i^2 \sum y_i^2$$

 $\Rightarrow r^2 \le 1 \Rightarrow -1 \le r \le 1$

Proposition: β and *r* have the same sign.

Proof:

$$\hat{\beta} = \frac{\sum (x_i - \bar{x}) y_i}{\sum (x_i - \bar{x})^2} = r \frac{\sqrt{\sum (y_i - \bar{y})^2}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

æ

(B)

Correlation cont'd.

$$\sum e_i^2 = \sum (y_i - \bar{y})^2 - \hat{\beta}^2 \sum (x_i - \bar{x})^2$$

SSR = TSS - SS explained by x

Proposition:

$$r^{2} = 1 - \frac{SSR}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Proof:

$$\frac{\sum e_i^2}{\sum (y_i - \bar{y})^2} = 1 - \hat{\beta}^2 \frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2} = 1 - r^2$$
$$\Rightarrow r^2 = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2}$$

æ

イロト イヨト イヨト イヨト

Warning: Zero Correlation does not imply Independence

Variables are completely dependent, correlation is zero. Correlation is a measure of linear dependence.

Professor N. M. Kiefer (Cornell University)

A complete specification of the model

Conditional distribution of observables

Conditional on regressors \boldsymbol{x} "exogenous variables" - variables determined outside the model

Conditional on parameters $P(y|x, \alpha, \beta, \sigma^2)$

Previously, specified only mean and maybe variance

Incompletely specified = "semiparametric"

Point estimate: MLE - intuition

Details, asy. justification lecture 9.

ヘロト 人間ト 人間ト 人間ト

Assumptions: Normality

$$p(y|x) = N(\alpha + \beta x, \sigma^2)$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{y - \alpha - \beta x}{\sigma}\right)^2\right)$

Likelihood Function:

$$L(\alpha, \beta, \sigma^2) = \prod_{i=1}^n (p(y_i|x_i))$$

= $(2\pi\sigma^2)^{(-n/2)} \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2\right)$

The maximum likelihood (ML) estimators maximize L. The log likelihood function is

$$\ell(\alpha, \beta, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2$$

æ

イロト イ理ト イヨト イヨト

Proposition: The LS estimators are also the ML estimators. What is the maximum in σ^2 ?

$$\sigma_{ML}^2 = \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2 / n$$

Why?

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2 \Rightarrow \sigma_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Is this a maximum in σ ?

$$\frac{\partial^2 \ell}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum (y_i - \alpha - \beta x_i)^2 = \frac{-n}{2\sigma^4} < 0$$

3

過 ト イ ヨ ト イ ヨ ト

These are linear combinations of normal random variables, hence they are **normal**. The means and variances have already been obtained:

Distribution of s^2 and $\sigma^2_{\it ML}$

Fact: $\sum e^2$ can be written as a sum of squares of (n-2) independent normal random variables with means zero and variances σ^2 .

Proposition: s^2 is unbiased and $Vs^2 = 2\sigma^4/(n-2)$.

Proof: Note that $(n-2)s^2/\sigma^2$ is distributed as $\chi^2(n-2)$

$$\Rightarrow E(s^2/\sigma^2)(n-2) = (n-2) \Rightarrow E(s^2) = \sigma^2$$

$$\Rightarrow V(s^2/\sigma^2)(n-2) = 2(n-2)$$

so $V(s^2) = 2\sigma^4/(n-2)$

Proposition: s^2 has higher variance than σ^2_{ML}

Proof: Note that $\frac{n\sigma_{ML}^2}{\sigma^2}$ is distributed as

$$\chi^{2}(n-2)$$

$$\Rightarrow E\sigma_{ML}^{2} = \frac{\sigma^{2}(n-2)}{n}$$

$$\Rightarrow V\left(\frac{n\sigma_{ML}^{2}}{\sigma^{2}}\right) = 2(n-2) \Rightarrow V(\sigma_{ML}^{2}) = \frac{2\sigma^{4}(n-2)}{n^{2}}$$

$$\Rightarrow \frac{V(s^{2})}{V(\sigma_{ML}^{2})} = \frac{1/(n-2)}{(n-2)n^{2}} = \frac{n^{2}}{(n-2)^{2}} > 1$$

æ

Inference

$$\hat{\beta} \sim N(\beta, \sigma_{\beta}^2)$$
 where $\sigma_{\beta}^2 = \frac{\sigma^2}{\sum (x_i - \bar{x})^2} \Rightarrow \frac{\hat{\beta} - \beta}{\sigma_{\beta}} \sim n(0, 1)$

Definition: A 95% confidence interval for $\hat{\beta}$ is given by $(\hat{\beta} \pm z_{0.025}^* \sigma_{\beta})$ where z is standard normal.

Problem: The variance is unknown.

Fact: If $z \sim n(0,1)$ and $v \sim \chi^2(k)$ and they are independent, then $t = \frac{z}{\sqrt{v/k}}$ is distributed as t(k).

Proposition:

$$rac{\hat{eta}-eta}{s/\sqrt{\sum(x_i-ar{x})^2}}\sim t(n-2)$$

(本間) (本語) (本語) (二語

Proof:

$$\frac{\frac{(\hat{\beta}-\beta)\sqrt{\sum(x_i-\bar{x})^2}}{\sigma} \sim n(0,1)}{\frac{\frac{s^2}{\sigma^2}(n-2)}{\frac{(\hat{\beta}-\beta)\sqrt{\sum(x_i-\bar{x})^2}}{\frac{\sigma}{s/\sigma}}} = \frac{(\hat{\beta}-\beta)}{\frac{s}{\sqrt{\sum(x_i-\bar{x})^2}}} \sim t(n-2)$$

Independence?

$$E(\hat{\beta} - \beta)e_j = E[(\hat{\beta} - \beta)(e_j - \bar{e})]$$

$$= E[(\hat{\beta} - \beta)((\alpha - \hat{\alpha}) + (\beta - \hat{\beta})x_j + \varepsilon_j - (\alpha - \hat{\alpha}) - (\beta - \hat{\beta})\bar{x} - \bar{\varepsilon})]$$

$$= [(\hat{\beta} - \beta)(-(\hat{\beta} - \beta)(x_j - \bar{x}) + (\varepsilon_j - \bar{\varepsilon}))]$$

$$= -(x_j - \bar{x})E[(\hat{\beta} - \beta)^2] + E[(\hat{\beta} - \beta)(\varepsilon_j - \bar{\varepsilon})]$$

$$= \frac{-\sigma^2(x_j - \bar{x})}{\sum(x_i - \bar{x})^2} + E\frac{(\varepsilon_j - \bar{\varepsilon})\sum(x_i - \bar{x})\varepsilon_i}{\sum(x_i - \bar{x})^2}$$

æ

Continuation of independence argument

$$E\frac{(\varepsilon_j-\bar{\varepsilon})\sum(x_i-\bar{x})\varepsilon_i}{\sum(x_i-\bar{x})^2}=\frac{\sigma^2(x_j-\bar{x})}{\sum(x_i-\bar{x})^2}-E\frac{\bar{\varepsilon}\sum(x_i-\bar{x})\varepsilon_i}{\sum(x_i-\bar{x})^2}.$$

$$E\frac{\bar{\varepsilon}\sum(x_i-\bar{x})\varepsilon_i}{\sum(x_i-\bar{x})^2}=0.$$

Thus,

$$E(\hat{\beta}-\beta)e_j=0.$$

æ

< ロト < 同ト < ヨト < ヨト

- I. $Ey_i = \alpha + x_i\beta$
- **II.** $V(y_i|x_i) = V(\varepsilon_i) = \sigma^2$

The alternative is σ_i^2 different across observations (*heteroskedasticity*). Is the LS estimator unbiased? Is it BLUE?

If the σ_i are known we can run the 'transformed' regression, and will get best linear unbiased estimates and correct standard errors.

$$w_i = 1/\sigma_i, \text{ let } w_i y_i = \alpha w_i + \beta x_i w_i + \varepsilon_i w_i.$$

$$Ew_i y_i = \alpha w_i + \beta x_i w_i \text{ and } V(w_i y_i) = V(\varepsilon_i w_i) = 1$$

The Gauss-Markov Theorem tells that LS is BLUE in the transformed model.

The LS estimator in the transformed model is

$$\hat{\beta}_{w} = \frac{\sum(x_{i}w_{i} - \overline{xw})w_{i}y_{i}}{\sum(x_{i}w_{i} - \overline{xw})^{2}} \neq \hat{\beta}$$
with

$$V(\hat{\beta}) = \frac{\sum(x_{i} - \overline{x})^{2}\sigma_{i}^{2}}{\left(\sum(x_{i} - \overline{x})^{2}\right)^{2}}$$

Note: The variance of β_w is less than the variance of $\hat{\beta}$.

"Heteroskedasticity Consistent" standard errors:

$$V(\hat{\beta}) = E\left[\frac{\sum(x_i - \bar{x})\varepsilon_i}{\sum(x_i - \bar{x})^2}\right]^2 = E\left[\frac{\sum(x_i - \bar{x})^2\varepsilon_i^2}{\left(\sum(x_i - \bar{x})^2\right)^2}\right]$$

insert e for ε and remove the expectation.

Essentially this works because $\sum \hat{e}_i^2/n$ is a reasonable estimator for $\sum \sigma_i^2/n$, although of course, \hat{e}_i^2 is not a good estimator for σ_i^2 .

Testing for heteroskedasticity: Split the sample; regress e^2 on stuff

III. $E\varepsilon_i\varepsilon_j=0$

The alternative is $E\varepsilon_i\varepsilon_j \neq 0$ Is the LS estimator unbiased? Is it BLUE? *Testing for correlated errors*: We need a hypothesis about the correlation.

IV. Normality

$$E(y_i|x_i) = \alpha + \beta x_i$$
; $V(y_i|x_i) = \sigma^2$ but $\varepsilon_i \sim f(\varepsilon) \neq N(0,\sigma^2)$

The usual suspect is a heavy-tailed distribution. Is the LS estimator unbiased? Is it BLUE?

Example:

$$f(\varepsilon) = \frac{1}{2\phi} \exp\left(-\left|\varepsilon/\phi\right|\right)$$

The variance of the ML estimator is half that of the LS estimator asymptotically. The minimum absolute deviation (MAD) estimator works. It is a **robust** estimator.