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& and B are the LS estimators

§i = & + PBx; are the estimated values

The Correlation Coefficient:

D Y s /)
V00— 3P0~ 7

R? = (squared) correlation between y and y
Note: ¥ is a linear function of x.

So corr(y,y) = |corr(y, x)|.
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Correlation

Proposition: —1 <r <1

_ (D)
> (xi—x)2 Z(Y:’_}/)2 '

Use Cauchy-Schwartz

(Cxiyi)* <Y v?

=r<l=-1<r<1

Proposition: 8 and r have the same sign.

Proof:
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Correlation cont'd.

Yot =y —y)? =B X(xi —x)?
SSR = TSS - SS explained by x

Proposition:
21 SSR 1 S e?
7SS >(yi—y)?
Proof:
AP N e it PR
>y —7)? > (yvi —7)?
2
2 > &
=r-=1 —
>(yi—y)?
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Warning: Zero Correlation does not imply Independence

1k
1.6} s
1.6} s
T.df (
LE} s

Variables are completely dependent, correlation is zero. Correlation is a
measure of linear dependence.
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The Likelihood Function

A complete specification of the model
Conditional distribution of observables

Conditional on regressors x “exogenous variables” - variables determined
outside the model

Conditional on parameters P(y|x, a, 3,0?)
Previously, specified only mean and maybe variance
Incompletely specified = “semiparametric”

Point estimate: MLE — intuition

Details, asy. justification lecture 9.
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Maximum Likelihood Estimators

Assumptions: Normality

plylx) = N(a+px,0°)
B 1 o 1 <yo¢ﬁx>2
V2mo? P 2 o
Likelihood Function:
L(a,8,0%) = TI1(p(yilx)
—n —1 n
= (27T0'2)( /2) exp <M Zi:l(yi — O — 5X,‘)2>

The maximum likelihood (ML) estimators maximize L. The log likelihood
function is

n n 1
E(a,ﬁ,a2) =3 In(27) — 5 Ino? — 552 Yrilyi—a— ﬁx,-)2
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Maximum Likelihood cont'd.

Proposition: The LS estimators are also the ML estimators. What is the
maximum in ¢2?

o =0 (yi — & — Bx)?/n

Why?
% = _ﬁ + ﬁz:r']:l(yi - _5Xi)2

1 N
= oL = 5 i (Vi — & — Bxi)?
Is this a maximum in o?

2 —
ok = i~ B Ll B = 7 <0
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Distribution of Estimators

These are linear combinations of normal random variables, hence they are
normal. The means and variances have already been obtained:

Distribution of s? and 3%,

Fact: Y e? can be written as a sum of squares of (n — 2) independent
normal random variables with means zero and variances 2.

Proposition: s is unbiased and Vs? = 20*/(n — 2).

Proof: Note that (n —2)s?/o? is distributed as x?(n — 2)
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More Distributions

= E(s?/0?)(n—2) = (n—2) = E(s?) = 02
= V(s?/o?)(n—2) =2(n-2)
so V(s?) = 20%/(n—2)

o . 2 . . 2
Proposition: s* has higher variance than oy,

2
now,

Proof: Note that is distributed as

X*(n—2)
- Eza%/lL = 02(7772)
=V (%) = 2(n—2) = V(o3,) =

V(s?) _ 1/(n=2) _ _n?
= V() T (-2 = (-2 = 1

o2

20%(n—2)
n2
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Inference

o2

B~ N(ﬂ,aﬁ) where 05 = Z(X’ Tl 50—73 ~

. n(0,1)

Definition: A 95% confidence interval for 3 is given by (,B’ + 25 0250 3)
where z is standard normal.

Problem: The variance is unknown.

Fact: If z~ n(0,1) and v ~ x2(k) and they are independent, then
t= \/iW is distributed as t(k).

Proposition:
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Independence?

E(B-B)e = EIB-
= E[(




Continuation of independence argument

E(aj—E)Z(X,-—)_()E,- _ o%(x—x) EEZ(X,-—X)E,-

di—x2 D (x—x)? > xi—x)2

EE Z(X,‘—)_()E,' —0.
> (xi—x)?

Thus,

E(B - B)ej = 0.
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Violations of Assumptions

l. Eyi=a+x3
1. V(y,-\x,-) = V(E,‘) == 0'2

The alternative is o2 different across observations (heteroskedasticity).
Is the LS estimator unbiased? Is it BLUE?

If the o; are known we can run the ‘transformed’ regression, and will get
best linear unbiased estimates and correct standard errors.

w; = 1/0’,‘, let wiy; = aw; + Bxjw; + €jw;.

Ewiy; = aw; + Bx;w; and V(w,y;) = V(eiw;) = 1

The Gauss-Markov Theorem tells that LS is BLUE in the transformed
model.
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Heteroskedasticity continued

The LS estimator in the transformed model is

T
with

oy D (x—%)0?
V() = 2l
(5) (Z(X,'*)_()Z)

Note: The variance of 3, is less than the variance of 3.

“Heteroskedasticity Consistent” standard errors:
2
V(B = E Z(X:’)?)&} —F > (xi—x)%e?
) { 2 (=X (X 0o-2)’

insert e for € and remove the expectation.
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More on Heteroskedasticity

Essentially this works because >~ &2/n is a reasonable estimator for
Za%/n, although of course, é,.z is not a good estimator for 0,2.
Testing for heteroskedasticity:

Split the sample; regress e on stuff

1. EE,'&‘j =0

The alternative is Ecje; # 0
Is the LS estimator unbiased? Is it BLUE?
Testing for correlated errors:
We need a hypothesis about the correlation.
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More (last) on violations of assumptions

IV. Normality
E(yilxi) = a+ Bxi; V(yilx) = 0° but &; ~ f(e) # N(0,0?)

The usual suspect is a heavy-tailed distribution. Is the LS estimator
unbiased? Is it BLUE?

Example:

F(e) = 2 exp (~ ¢/
The variance of the ML estimator is half that of the LS estimator
asymptotically. The minimum absolute deviation (MAD) estimator works.
It is a robust estimator.
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