Economics 620, Lecture 3: Simple Regression II

Nicholas M. Kiefer

Cornell University
$\hat{\alpha}$ and $\hat{\beta}$ are the LS estimators
$\hat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i}$ are the estimated values

The Correlation Coefficient:

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}} .
$$

$R^{2}=($ squared $)$ correlation between y and \hat{y}
Note: \hat{y} is a linear function of x.
So $\operatorname{corr}(y, \hat{y})=|\operatorname{corr}(y, x)|$.

Correlation

Proposition: $-1<r<1$

$$
r^{2}=\frac{\left(\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}} .
$$

Use Cauchy-Schwartz

$$
\begin{aligned}
& \left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \sum y_{i}^{2} \\
& \Rightarrow r^{2} \leq 1 \Rightarrow-1 \leq r \leq 1
\end{aligned}
$$

Proposition: β and r have the same sign.
Proof:

$$
\hat{\beta}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

Correlation cont'd.

$$
\sum e_{i}^{2}=\sum\left(y_{i}-\bar{y}\right)^{2}-\hat{\beta}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}
$$

SSR $=$ TSS - SS explained by x
Proposition:

$$
r^{2}=1-\frac{S S R}{T S S}=1-\frac{\sum e_{i}^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

Proof:

$$
\begin{gathered}
\frac{\sum e_{i}^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=1-\hat{\beta}^{2} \frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=1-r^{2} \\
\Rightarrow r^{2}=1-\frac{\sum\left(e_{i}^{2}\right.}{\sum\left(y_{i}-\bar{y}\right)^{2}}
\end{gathered}
$$

Warning: Zero Correlation does not imply Independence

Variables are completely dependent, correlation is zero. Correlation is a measure of linear dependence.

The Likelihood Function

A complete specification of the model
Conditional distribution of observables
Conditional on regressors x "exogenous variables" - variables determined outside the model

Conditional on parameters $P\left(y \mid x, \alpha, \beta, \sigma^{2}\right)$
Previously, specified only mean and maybe variance
Incompletely specified = "semiparametric"
Point estimate: MLE - intuition
Details, asy. justification lecture 9.

Maximum Likelihood Estimators

Assumptions: Normality

$$
\begin{aligned}
p(y \mid x) & =N\left(\alpha+\beta x, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2}\left(\frac{y-\alpha-\beta x}{\sigma}\right)^{2}\right)
\end{aligned}
$$

Likelihood Function:

$$
\begin{aligned}
L\left(\alpha, \beta, \sigma^{2}\right) & =\prod_{i=1}^{n}\left(p\left(y_{i} \mid x_{i}\right)\right. \\
& =\left(2 \pi \sigma^{2}\right)^{(-n / 2)} \exp \left(\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}\right)
\end{aligned}
$$

The maximum likelihood (ML) estimators maximize L. The log likelihood function is

$$
\ell\left(\alpha, \beta, \sigma^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}
$$

Maximum Likelihood cont'd.

Proposition: The LS estimators are also the ML estimators. What is the maximum in σ^{2} ?

$$
\sigma_{M L}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} / n
$$

Why?

$$
\begin{aligned}
& \frac{\partial \ell}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} \\
& \Rightarrow \sigma_{M L}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}
\end{aligned}
$$

Is this a maximum in σ ?

$$
\frac{\partial^{2} \ell}{\partial\left(\sigma^{2}\right)^{2}}=\frac{n}{2 \sigma^{4}}-\frac{1}{\sigma^{6}} \sum\left(y_{i}-\alpha-\beta x_{i}\right)^{2}=\frac{-n}{2 \sigma^{4}}<0
$$

Distribution of Estimators

These are linear combinations of normal random variables, hence they are normal. The means and variances have already been obtained:

Distribution of s^{2} and $\sigma_{M L}^{2}$
Fact: $\quad \sum e^{2}$ can be written as a sum of squares of $(n-2)$ independent normal random variables with means zero and variances σ^{2}.

Proposition: s^{2} is unbiased and $V s^{2}=2 \sigma^{4} /(n-2)$.
Proof: Note that $(n-2) s^{2} / \sigma^{2}$ is distributed as $\chi^{2}(n-2)$

More Distributions

$$
\begin{gathered}
\Rightarrow E\left(s^{2} / \sigma^{2}\right)(n-2)=(n-2) \Rightarrow E\left(s^{2}\right)=\sigma^{2} \\
\Rightarrow V\left(s^{2} / \sigma^{2}\right)(n-2)=2(n-2) \\
\text { so } V\left(s^{2}\right)=2 \sigma^{4} /(n-2)
\end{gathered}
$$

Proposition: s^{2} has higher variance than $\sigma_{M L}^{2}$
Proof: Note that $\frac{n \sigma_{M L}^{2}}{\sigma^{2}}$ is distributed as

$$
\begin{aligned}
& \chi^{2}(n-2) \\
& \Rightarrow E \sigma_{M L}^{2}=\frac{\sigma^{2}(n-2)}{n} \\
& \Rightarrow V\left(\frac{n \sigma_{M L}^{2}}{\sigma^{2}}\right)=2(n-2) \Rightarrow V\left(\sigma_{M L}^{2}\right)=\frac{2 \sigma^{4}(n-2)}{n^{2}} \\
& \Rightarrow \frac{V\left(s^{2}\right)}{V\left(\sigma_{M L}^{2}\right)}=\frac{1 /(n-2)}{(n-2) n^{2}}=\frac{n^{2}}{(n-2)^{2}}>1
\end{aligned}
$$

Inference

$\hat{\beta} \sim N\left(\beta, \sigma_{\beta}^{2}\right)$ where $\sigma_{\beta}^{2}=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \Rightarrow \frac{\hat{\beta}-\beta}{\sigma_{\beta}} \sim n(0,1)$
Definition: A 95\% confidence interval for $\hat{\beta}$ is given by ($\hat{\beta} \pm z_{0.025}^{*} \sigma_{\beta}$) where z is standard normal.

Problem: The variance is unknown.
Fact: If $z \sim n(0,1)$ and $v \sim \chi^{2}(k)$ and they are independent, then $t=\frac{z}{\sqrt{v / k}}$ is distributed as $t(k)$.

Proposition:

$$
\frac{\hat{\beta}-\beta}{s / \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2)
$$

Proof:

$$
\begin{gathered}
\frac{(\hat{\beta}-\beta) \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}{\sigma} \sim n(0,1) \\
\frac{s^{2}}{\sigma^{2}}(n-2) \sim \chi^{2}(n-2) \\
\frac{(\hat{\beta}-\beta) \sqrt{\sum_{\sigma}\left(x_{i}-\bar{x}\right)^{2}}}{s / \sigma}=\frac{(\hat{\beta}-\beta)}{s / \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2)
\end{gathered}
$$

Independence?

$$
\begin{aligned}
E(\hat{\beta}-\beta) e_{j}= & E\left[(\hat{\beta}-\beta)\left(e_{j}-\bar{e}\right)\right] \\
= & E\left[(\hat { \beta } - \beta) \left((\alpha-\hat{\alpha})+(\beta-\hat{\beta}) x_{j}+\varepsilon_{j}\right.\right. \\
& -(\alpha-\hat{\alpha})-(\beta-\hat{\beta}) \bar{x}-\bar{\varepsilon})] \\
= & {\left[(\hat{\beta}-\beta)\left(-(\hat{\beta}-\beta)\left(x_{j}-\bar{x}\right)+\left(\varepsilon_{j}-\bar{\varepsilon}\right)\right)\right] } \\
= & -\left(x_{j}-\bar{x}\right) E\left[(\hat{\beta}-\beta)^{2}\right] \\
& +E\left[(\hat{\beta}-\beta)\left(\varepsilon_{j}-\bar{\varepsilon}\right)\right] \\
= & \frac{-\sigma^{2}\left(x_{j}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}+E \frac{\left(\varepsilon_{j}-\bar{\varepsilon}\right) \sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Continuation of independence argument

$$
\begin{aligned}
& E \frac{\left(\varepsilon_{j}-\overline{\bar{c}}\right) \sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sigma^{2}\left(x_{j}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}-E \frac{\bar{\varepsilon} \sum\left(x_{i}-\overline{-}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} . \\
& E \frac{\bar{\varepsilon} \sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=0 .
\end{aligned}
$$

Thus,
$E(\hat{\beta}-\beta) e_{j}=0$.

Violations of Assumptions

I. $E y_{i}=\alpha+x_{i} \beta$
II. $V\left(y_{i} \mid x_{i}\right)=V\left(\varepsilon_{i}\right)=\sigma^{2}$

The alternative is σ_{i}^{2} different across observations (heteroskedasticity). Is the LS estimator unbiased? Is it BLUE?

If the σ_{i} are known we can run the 'transformed' regression, and will get best linear unbiased estimates and correct standard errors.
$w_{i}=1 / \sigma_{i}$, let $w_{i} y_{i}=\alpha w_{i}+\beta x_{i} w_{i}+\varepsilon_{i} w_{i}$.
$E w_{i} y_{i}=\alpha w_{i}+\beta x_{i} w_{i}$ and $V\left(w_{i} y_{i}\right)=V\left(\varepsilon_{i} w_{i}\right)=1$
The Gauss-Markov Theorem tells that LS is BLUE in the transformed model.

Heteroskedasticity continued

The LS estimator in the transformed model is
$\hat{\beta}_{w}=\frac{\sum\left(x_{i} w_{i}-\overline{x w}\right) w_{i} y_{i}}{\sum\left(x_{i} w_{i}-\overline{x w}\right)^{2}} \neq \hat{\beta}$
with
$V(\hat{\beta})=\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \sigma_{i}^{2}}{\left(\sum\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}$
Note: The variance of β_{w} is less than the variance of $\widehat{\beta}$.
"Heteroskedasticity Consistent" standard errors:
$V(\hat{\beta})=E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{2}=E\left[\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \varepsilon_{i}^{2}}{\left(\sum\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}\right]$
insert e for ε and remove the expectation.

More on Heteroskedasticity

Essentially this works because $\sum \hat{e}_{i}^{2} / n$ is a reasonable estimator for $\sum \sigma_{i}^{2} / n$, although of course, \hat{e}_{i}^{2} is not a good estimator for σ_{i}^{2}.

Testing for heteroskedasticity:
Split the sample; regress e^{2} on stuff
III. $E \varepsilon_{i} \varepsilon_{j}=0$

The alternative is $E \varepsilon_{i} \varepsilon_{j} \neq 0$
Is the LS estimator unbiased? Is it BLUE?
Testing for correlated errors:
We need a hypothesis about the correlation.

More (last) on violations of assumptions

IV. Normality

$E\left(y_{i} \mid x_{i}\right)=\alpha+\beta x_{i} ; V\left(y_{i} \mid x_{i}\right)=\sigma^{2}$ but $\varepsilon_{i} \sim f(\varepsilon) \neq N\left(0, \sigma^{2}\right)$
The usual suspect is a heavy-tailed distribution. Is the LS estimator unbiased? Is it BLUE?

Example:

$$
f(\varepsilon)=\frac{1}{2 \phi} \exp (-|\varepsilon / \phi|)
$$

The variance of the ML estimator is half that of the LS estimator asymptotically. The minimum absolute deviation (MAD) estimator works. It is a robust estimator.

