# Economics 620, Lecture 20: Generalized Method of Moment (GMM) 

Nicholas M. Kiefer

Cornell University

- Key: Set sample moments equal to theoretical moments and solve parameters.
- Generalized moments: Expectations of functions

Eg.

$$
\begin{aligned}
E(y-\mu) & =0 \\
\text { set } \frac{1}{n} \sum\left(y_{i}-\hat{\mu}\right) & =0 \Leftrightarrow \hat{\mu}=\bar{y}
\end{aligned}
$$

## Regression

$E(y-X \beta)=0$
set $\frac{1}{n} \sum\left(y_{i}-X_{i} \beta\right)=0$ ?

- Too many solutions
- Suppose we group into $K$ groups
- Solve simultaneously
- Illustrates arbitrariness of choice of moment conditions
- A better moment condition:

$$
E\left(X^{\prime}(y-X \beta)\right)=0
$$

solve

$$
X(y-X \hat{\beta})=0 \text { for } \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

a GMM estimator!

Often we have overidentifying restrictions

$$
\begin{aligned}
& E\left(W^{\prime}(y-X \beta)\right)=0 \\
W: & n \times p, p>k
\end{aligned}
$$

Then $W^{\prime}(y-X \hat{\beta})=0$ is $p$ linear equations in $K$ unknonws.
Write $W^{\prime} y=W^{\prime} X \beta+\varepsilon$ and do GLS.

If

$$
V(y)=\sigma^{2} I, V(\varepsilon)=\sigma^{2} W^{\prime} W .
$$

Then

$$
\hat{\beta}_{G L S}=\hat{\beta}_{G M M}=\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} y
$$

Which is the solution to

$$
\min (y-X \hat{\beta})^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime}(y-X \hat{\beta})
$$

With $V(y)=V$ :

$$
\hat{\beta}=\left(X^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime} X\right)^{-1} W\left(W^{\prime} V W\right)^{-1} W^{\prime} y
$$

Solution to

$$
\min (y-x \hat{\beta})^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime}(y-X \hat{\beta})
$$

## Distribution Theory

- Assume $\frac{W^{\prime} \varepsilon}{\sqrt{n}} \rightarrow N\left(0, W^{\prime} V W\right)$ plausible?

Then

$$
\hat{\beta} \approx \beta+\left(X^{\prime} W\left(W^{\prime} V W\right)^{-1} X^{\prime} W\right)^{-1} X^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime} \varepsilon
$$

so

$$
\sqrt{n}(\hat{\beta}-\beta)^{\sim} N\left(0,\left(X^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime} X\right)^{-1}\right)
$$

The trick is choosing the moments (or instruments)

- More cannot hurt.

Asymptotically we have:

$$
E\left(W^{\prime}(y-X \beta)\right)=0
$$

Instead use:

$$
\begin{aligned}
& E\left(A^{\prime} W^{\prime}(y-X \beta)\right)=0 \\
A: & m \times p, m<p
\end{aligned}
$$

(Fewer conditions)
Then

$$
\begin{aligned}
V\left(\beta_{A}\right) & =\left[X^{\prime} W A\left(A^{\prime} W^{\prime} V W A\right)^{-1} A^{\prime} W^{\prime} X\right]^{-1} \\
V(\hat{\beta})^{-1}-V\left(\beta_{A}\right)^{-1} & =X^{\prime} W\left[\left(W^{\prime} V W\right)^{-1}-A\left(A^{\prime} W^{\prime} V W A\right)^{-1} A^{\prime}\right] W^{\prime} X
\end{aligned}
$$

Letting

$$
\begin{aligned}
C C^{\prime} & =\left(W^{\prime} V W\right)^{-1} \\
V(\hat{\beta})^{-1}-V\left(\beta_{A}\right)^{-1} & =X^{\prime} W C\left[I-C^{-1} A\left(A^{\prime} C^{\prime-1} C^{-1} A\right)^{-1} A^{\prime} C^{\prime-1}\right] C^{\prime} W^{\prime} X
\end{aligned}
$$

p.s.d., so

$$
V\left(\beta_{A}\right) \geq V(\hat{\beta})
$$

- Note that more may not help if conditions are chosen right.

$$
\left(W^{\prime}=X^{\prime} \text { for OLS }\right)
$$

- Look more closely at the case $V(y)=I$ : If we let $W=[X Z]$

$$
\hat{\beta}=\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

(after a little work)

- First factor is $\left(X^{\prime} X\right)^{-1}$
- Note $W\left(W^{\prime} W\right)^{-1} W^{\prime} X$ is the matrix of predicted values from the regression of $X$ on $W$ (namely, $X$ itself)


## Nonlinear Models

$E\left(W^{\prime} f(\theta)\right)=0, W: n \times p, f(\theta): n \times 1, \theta: k \times 1$
Same principle as linear:
Let $F=f_{\theta}: n \times k$ and $E\left(f f^{\prime}\right)=V$
Solving by nonlinear GLS minimizes

$$
f^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime} f
$$

and

$$
\sqrt{n}(\hat{\theta}-\theta)^{\sim} N\left(0, n\left[F^{\prime} W\left(W^{\prime} V W\right)^{-1} W^{\prime} F\right]^{-1}\right)
$$

choice of instruments?
Try $W=V^{-1} F$
Then $V(\hat{\theta})=\left[F^{\prime} V^{-1} F\left(F^{\prime} V^{-1} V V^{-1} F\right)^{-1} F^{\prime} V^{-1} F\right]^{-1}=\left[F^{\prime} V^{-1} F\right]^{-1}$

- Smallest in this class (why?) (note there are only $k$ of these)


## Generalization

- We have only considered covariances so far.

Consider $G$ : $N \times p$ where we let each column represent different functions of data. We have $N$ observations on each function, sothe moment conditions become

$$
E\left(f_{t i}\left(y_{t}, \theta\right)\right)=0, \quad i=1, \ldots, k \quad t=1, \ldots, N
$$

Where earlier we had specified

$$
f_{i t}(y, \theta)=w_{i t} f_{i t}
$$

- Now GLS can be applied:

Resulting in $\min 1^{\prime} G A G^{\prime} 1$

That is, the moment conditions are $1^{\prime} G=0$ and $A$ is a p.d. weighting matrix.

For efficiency, $A$ should be equal to (well, proportional to) $V\left(1^{\prime} G\right)^{-1}$ (this is $E\left(F F^{\prime}\right)$ in earlier notation $)$.

To develop intuition for this, consider the linear case where $G$ has elements

$$
f_{t i}=w_{t i}\left(y_{t}-x_{t} \beta\right)
$$

And the $1^{\prime}$ just sums over observations, so $V\left(1^{\prime} G\right)$ is just $\left(W^{\prime} W\right)$.
Note $1^{\prime} G$ is taking the place of $(y-X \beta)^{\prime} W$.

## Asymptotic Distribution of GMM

Write $Q=1^{\prime} G A G^{\prime} 1$, the function to be minimized to calculate the GMM estimator.

Taking the Taylor expansion of the first order condition $Q_{\theta}=0$

$$
0=Q_{\theta}(\theta)+Q_{\theta \theta}\left(\theta^{*}-\theta\right)
$$

and just as in the ML case, we solve for the vector of estimation errors as

$$
\left(\theta^{*}-\theta\right)=-\left(Q_{\theta \theta}\right)^{-1} Q_{\theta}
$$

and apply a LLN to the second derivative matrix and a CLT to the "scores."

The notation can get cumbersome here, but let $g_{i j}=$ the derivative of the ith column of $1^{\prime} G$ with respect to $\theta_{j}$, and let $g=\left\{g_{i j}\right\}$ be the associated matrix. Then

$$
V\left(n^{1 / 2}\left(\theta^{*}-\theta\right)\right)=\left(g^{\prime} A g\right)^{-1} g^{\prime} A E F F^{\prime} A g\left(g^{\prime} A g\right)^{-1}
$$

This comes from evaluating the derivatives, bringing in the scaling factors in $n$ and generally simplifying. The result should look familiar.

Note that when $A=E F F^{\prime}$, the formula simplifies to

$$
V\left(n^{1 / 2}\left(\theta^{*}-\theta\right)\right)=\left(g^{\prime} A g\right)^{-1}
$$

As in the usual GLS case!

Questions: How many moments to use? Note the FOC only use k.... Nice analogy with 2SLS - with lots of IV, still with 2SLS, we reduce to the "just identified" case by using the optimal linear combination of instruments.

Discussion?
In fact $k$ moments are sufficient for efficiency if there are $k$ parameters. What are the $k$ moments?

The real use for GMM is when the LF is too complicated or unknown (better, not plausibly known).

## Conditional GMM

Basically generates more moment conditions. When we take $X^{\prime}(y-X \beta)=0$, we are imposing that the error is uncorrelated with $X$.

But the property may be stronger, e.g. that $E((y-X \beta) \mid X)=0$. This implies that $E X^{\prime}(y-X \beta)=0$ but also that any other function of $X$ is uncorrelated with $(y-X \beta)$. This comes up a lot in RE modeling and provides a source of lots of moment conditions.

Note tradeoff between introduction of noise and gains from using more moments.

## Conclusion

- GMM requires fewer assumptions than ML
- Can be somewhat arbitrary
- Can be very inefficient relative to ML

