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o Key: Set sample moments equal to theoretical moments and solve
parameters.

@ Generalized moments: Expectations of functions

Eg.
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Regression

E(y —Xp)=0
set %Z(y; — Xi8) =07

@ Too many solutions

@ Suppose we group into K groups

@ Solve simultaneously

@ lllustrates arbitrariness of choice of moment conditions

@ A better moment condition:

E(X'(y —XB)) =0
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solve

a GMM estimator!

Often we have overidentifying restrictions

E(W'(y - XB))=0
W : nxp p>k

Then W/(y — X,@’) = 0 is p linear equations in K unknonws.

Write W'y = W/X3 + ¢ and do GLS.
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V(y) =d?l, V() = > W'W.
Then
Bors = Bomm = (X' W(W' W)W X)X W(W'W) W'y
Which is the solution to
min(y — XB) W(W'W)""W'(y — X3).
With V(y) = V:
B=XWWvwW)TW X)) tw(wW vw) Tt Wy,

Solution to A A
min(y — x3) W(W'VW) " W (y — X3)
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Distribution Theory

o Assume % — N(0, W VW) plausible?

Then
BB+ (X' WW VW)X W)X W(W VW) T We

N V(B = B)" N, (X'W(W' VW)t W'X) ™)

The trick is choosing the moments (or instruments)
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@ More cannot hurt.

Asymptotically we have:
E(W'(y — XB))=0
Instead use:
E(AW/(y — XB)) = 0
A mxp m<p

(Fewer conditions)
Then

V(B,4) [X'WAA' W' VWA) LA W' X] 7!
V(B) = V(B8 = X'W[(WVW)L— AAW VWA TLATW' X
Letting
cc = (Wvw)!
V(B) L= V(By)t = X'WC[l— CTAACICTA)TAC W' X
p.s.d., so

~

V(Ba) > V()
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@ Note that more may not help if conditions are chosen right.
(W' = X' for OLS)
@ Look more closely at the case V(y) =1: If we let W = [XZ]
B=XWWW)ITWX) X WW W)Wy = (X' X)Xy
(after a little work)

e First factor is (X'X)~!

e Note W(W’'W)~1W'X is the matrix of predicted values from the
regression of X on W (namely, X itself)
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Nonlinear Models

E(W'f(0)) =0, W: nxp, f(0): nx1,0: kx1
Same principle as linear:

Let F =1fp: nx k and E(ff') =V

Solving by nonlinear GLS minimizes

frW(W' VW)t W'f

and
V(0 —60)"N(, n[F W(W' VW) W' F] 1)

choice of instruments?

Try W= VTIF
Then V(0) = [F'VIF(F'V-IWWLF)1F'V-1F]~1 = [F'V-1F]!

@ Smallest in this class (why?) (note there are only k of these)
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Generalization

@ We have only considered covariances so far.

Consider G: N x p where we let each column represent different functions
of data. We have N observations on each function, sothe moment
conditions become

E(fi(y:,0)) =0, i=1,...k t=1,..,N.
Where earlier we had specified

f;t(y,é’) = Witfit
@ Now GLS can be applied:

Resulting in min1’GAG'1
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That is, the moment conditions are 1’G = 0 and A is a p.d. weighting
matrix.

For efficiency, A should be equal to (well, proportional to) V(1'G)~! (this
is E(FF') in earlier notation).

To develop intuition for this, consider the linear case where G has elements
fri = wii(ye — xt3)
And the 1’ just sums over observations, so V(1'G) is just (W'W).

Note 1’G is taking the place of (y — X3)'W.
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Asymptotic Distribution of GMM

Write @ = 1’GAG'1, the function to be minimized to calculate the GMM
estimator.

Taking the Taylor expansion of the first order condition Qg = 0
0= Qp(0) + Qoo(0" — 0)

and just as in the ML case, we solve for the vector of estimation errors as
(6% —0) = —(Qoo) " Qo

and apply a LLN to the second derivative matrix and a CLT to the
“scores.”
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The notation can get cumbersome here, but let g;; = the derivative of the
ith column of 1'G with respect to 6}, and let g = {gj;} be the associated
matrix. Then

V(n'2(6" — 0)) = (¢'Ag) "' AEFF' Ag (g’ Ag) .

This comes from evaluating the derivatives, bringing in the scaling factors
in n and generally simplifying. The result should look familiar.

Note that when A = EFF’, the formula simplifies to
V(n'/2(0" - 0)) = (g'Ag) "

As in the usual GLS case!
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Questions: How many moments to use? Note the FOC only use k....
Nice analogy with 2SLS - with lots of 1V, still with 2SLS, we reduce to the
“just identified” case by using the optimal linear combination of
instruments.

Discussion?

In fact k moments are sufficient for efficiency if there are k parameters.
What are the kK moments?

The real use for GMM is when the LF is too complicated or unknown
(better, not plausibly known).
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Conditional GMM

Basically generates more moment conditions. When we take
X'(y — XB) =0, we are imposing that the error is uncorrelated with X.

But the property may be stronger, e.g. that E((y — X3)|X) =0. This
implies that EX’(y — X3) = 0 but also that any other function of X is
uncorrelated with (y — X3). This comes up a lot in RE modeling and

provides a source of lots of moment conditions.

Note tradeoff between introduction of noise and gains from using more
moments.
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Conclusion

o GMM requires fewer assumptions than ML
o Can be somewhat arbitrary

@ Can be very inefficient relative to ML
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