Economics 620, Lecture 2: Regression Mechanics (Simple Regression)

Nicholas M. Kiefer

Cornell University

- Observed variables: $y_{i}, x_{i} \quad i=1, \ldots, n$
- Hypothesized (model): $E y_{i}=\alpha+\beta x_{i}$ or $y_{i}=\alpha+\beta x_{i}+\left(y_{i}-E y_{i}\right)$; renaming we get: $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- Unobserved: $\alpha, \beta, \varepsilon_{i}$
- EXAMPLE: ENGEL CURVES
- Utility function: $u\left(z_{1}, \ldots, z_{k}\right)=\sum_{j=1}^{k} a_{j} \ln z_{j}$.
- Budget constraint: $m=\sum_{j=1}^{k} p_{j} z_{j}$.
- FOC: $\quad \frac{a_{j}}{z_{j}}-\lambda p_{j}=0 \quad j=1, \ldots, k$

$$
\begin{aligned}
& \Rightarrow \lambda=\frac{\sum_{j=1}^{k} a_{j}}{m_{j_{j} m}} \\
& \Rightarrow z_{j}=\frac{p_{j} p_{j}=\frac{a_{j}}{p_{j} \sum_{\ell=1}^{k} a_{\ell}} m}{\sum_{\ell=1}^{k} a_{\ell}} m
\end{aligned}
$$

Estimation

- We want to estimate: $E(y)=\alpha+\beta x$

Where y is the expenditure on good j and x is income. According to the model we also have:

$$
\beta=a_{j} / \sum a_{\ell}, \quad \alpha=0
$$

- We would like to estimate the unknowns from a sample of n observations on y and x.

The Least Squares Method

- The Least Squares criterion to estimate α and β is to choose $\hat{\alpha}$ and $\hat{\beta}$ to minimize the sum of squared vertical distances between $\hat{y}_{i}=\hat{\alpha}+\hat{\beta} x_{i}$ and y_{i}.
- Why do we consider the vertical distances?
- Why do we square?
- Let $S(a, b)=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.
- Partial deriviatives:

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right) \\
& \frac{\partial S}{\partial b}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right) .
\end{aligned}
$$

Normal Equations

- Normal equations:

$$
\begin{gathered}
0=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right) \\
0=\sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right) .
\end{gathered}
$$

- $\hat{\alpha}$ and $\hat{\beta}$ are the Least Squares (LS) Estimators

$$
\begin{align*}
\sum_{i=1}^{n} y_{i} & =n \hat{\alpha}+\hat{\beta} \sum_{i=1}^{n} x_{i} \tag{1}\\
\sum_{i=1}^{n} x_{i} y_{i} & =\hat{\alpha} \sum_{i=1}^{n} x_{i}+\hat{\beta} \sum_{i=1}^{n} x_{i}^{2} \tag{2}
\end{align*}
$$

- From (1):

$$
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} \text { where } \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}, \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

- Substituting into (2):

$$
\sum x_{i} y_{i}=(\bar{y}-\hat{\beta} \bar{x}) \sum x_{i}+\hat{\beta} \sum x_{i}^{2}
$$

Normal Equations cont'd.

$$
\begin{array}{r}
\Rightarrow \sum x_{i}\left(y_{i}-\bar{y}\right)=\hat{\beta}\left(\sum x_{i}^{2}-\bar{x} \sum x_{i}\right) \\
=\hat{\beta}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right) \\
=\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2} \\
\Rightarrow \hat{\beta}=\frac{\sum x_{i}\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
\Rightarrow \hat{\beta}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{array}
$$

- Is this a minimum? Note that:

$$
\frac{\partial^{2} S}{\partial a^{2}}=2 n ; \frac{\partial^{2} S}{\partial a \partial b}=2 \sum x_{i} ; \frac{\partial^{2} S}{\partial b^{2}}=2 \sum x_{i}^{2}
$$

Normal Equations cont'd

- Is the Hessian p.d.?
- $H=2\left[\begin{array}{ll}n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2}\end{array}\right]$
- YES! Use Cauchy-Schwarz:

$$
\left(\sum x_{i} z_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right)\left(\sum z_{i}^{2}\right)
$$

- Here:

$$
\left(\sum x_{i}\right)^{2} \leq\left(\sum x_{i}^{2}\right) n
$$

- Define the residuals as: $e_{i}=y_{i}-\hat{\alpha}-\hat{\beta} x_{i}$
- From the normal equations: $\quad \sum e_{i}=\sum x_{i} e_{i}=0$

Proof of Minimization

- Consider alternative estimators a^{*} and b^{*} :

$$
\begin{aligned}
S\left(a^{*}, b^{*}\right)= & \sum\left(y_{i}-a^{*}-b^{*} x_{i}\right)^{2} \\
= & \sum\left[\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)+\left(\hat{\alpha}-a^{*}\right)+\left(\hat{\beta}-b^{*}\right) x_{i}\right]^{2} \\
= & \sum e_{i}^{2}+2\left(\hat{\alpha}-a^{*}\right) \sum e_{i}+2\left(\hat{\beta}-b^{*}\right) \sum x_{i} e_{i} \\
& +\sum\left[\left(\hat{\alpha}-a^{*}\right)+\left(\hat{\beta}-b^{*}\right) x_{i}\right]^{2} \\
\geq & \sum e_{i}^{2}
\end{aligned}
$$

Properties of Estimators

- LS estimators are unbiased:

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\alpha \sum\left(x_{i}-\bar{x}\right)+\beta \sum\left(x_{i}-\bar{x}\right) x_{i}+\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\beta+\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \Rightarrow E \hat{\beta}=\beta, \\
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}=\alpha+(\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon} \Rightarrow E \hat{\alpha}=\alpha
\end{aligned}
$$

More Properties

- We cannot get more properties without further assumptions:
- Assume:

$$
V\left(y_{i} \mid x_{i}\right)=V\left(\varepsilon_{i}\right)=\sigma^{2}, \quad \operatorname{Cov}\left(\varepsilon_{i} \varepsilon_{j}\right)=0
$$

- Now:

$$
\begin{aligned}
V(\hat{\beta}) & =E(\hat{\beta}-\beta)^{2}=E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{2} \\
& =\frac{\sum\left(x_{i}-\bar{x}\right)^{2} \sigma^{2}}{\left(\sum\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}
\end{aligned}
$$

using $E \varepsilon_{i} \varepsilon_{j}=0$. Thus:

$$
V(\hat{\beta})=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

More Properties cont'd.

- Now for $V(\hat{\alpha})$,

$$
\begin{aligned}
& \hat{\alpha}-\alpha=(\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon} \\
\Rightarrow & V(\hat{\alpha})=V(\hat{\beta}) \bar{x}^{2}+\frac{\sigma^{2}}{n} \\
\Rightarrow & V(\hat{\alpha})=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]
\end{aligned}
$$

This requires $\operatorname{Cov}(\hat{\beta}, \bar{\varepsilon})=0$. Why?

$$
\begin{gathered}
E(\hat{\beta}-\beta) \bar{\varepsilon}=E\left[\left(\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)\left(\frac{1}{n} \sum \varepsilon_{j}\right)\right] \\
\quad=\frac{\sum\left(x_{i}-\bar{x}\right) \sigma^{2} / n}{\sum\left(x_{i}-\bar{x}\right)^{2}}=0
\end{gathered}
$$

Engel Curve Example cont'd.

- We know:

$$
p_{j} z_{j}=\frac{a_{j}}{\sum_{a_{\ell}}} m
$$

- Is $V\left(\varepsilon_{j}\right)=\sigma^{2}$ plausible here?
- How about logs:

$$
\ln \left(p_{j} z_{j}\right)=\ln \frac{a_{j}}{\sum_{j \ell} a_{\ell}}+\ln m ?
$$

This implies the regression equation

$$
y=\alpha+\beta x
$$

where y is \log expenditure on good j and x is log income.

- What are our expectations about the estimator values?
- Is this better?

Covariance of Estimators

$$
\begin{aligned}
\operatorname{Cov}(\hat{\alpha}, \hat{\beta}) & =E[(\hat{\alpha}-\alpha)(\hat{\beta}-\beta)] \\
& =E\left[((\beta-\hat{\beta}) \bar{x}+\bar{\varepsilon})\left(\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)\right] \\
& =-E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{2} \bar{x} \\
& =\frac{-\sigma^{2} \bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}} .
\end{aligned}
$$

Gauss-Markov Theorem

- The LS estimator is the best linear unbiased estimator (BLUE).
- Proof:
define

$$
w_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

so

$$
\hat{\beta}=\sum w_{i} y_{i} .
$$

Consider an alternative linear unbiased estimator:

$$
\tilde{\beta}=\sum c_{i} y_{i} .
$$

Write

$$
c_{i}=w_{i}+d_{i} .
$$

Note:

$$
\begin{gathered}
E \tilde{\beta}=\beta \Rightarrow E \sum c_{i}\left(\alpha+\beta x_{i}+\varepsilon_{i}\right)=\beta \\
E \sum c_{i}\left(\alpha+\beta x_{i}+\varepsilon_{i}\right)=\alpha \sum c_{i}+\beta \sum c_{i} x_{i} \\
\Rightarrow \sum c_{i}=0 ; \sum c_{i} x_{i}=1
\end{gathered}
$$

Gauss-Markov Theorem proof cont'd.

- Note that
w_{i} satisfies $\sum w_{i}=0 ; \sum w_{i} x_{i}=1$, so $\sum d_{i}=0$ and $\sum d_{i} x_{i}=0$.
- SO

$$
\begin{aligned}
V(\tilde{\beta}) & =E\left(\sum c_{i} \varepsilon_{i}\right)^{2}=\sigma^{2} \sum c_{i}^{2} \\
& =\sigma^{2} \sum\left(w_{i}+d_{i}\right)^{2} \\
& =\sigma^{2}\left[\sum d_{i}^{2}+2 \sum w_{i} d_{i}+\sum w_{i}^{2}\right]
\end{aligned}
$$

Now we have

$$
\begin{aligned}
V(\tilde{\beta})-V(\hat{\beta}) & =\sigma^{2}\left[\sum d_{i}^{2}+2 \sum w_{i} d_{i}\right] \\
& =\sigma^{2} \sum d_{i}^{2}
\end{aligned}
$$

- WHY?
- This is minimized when the estimators are identical!
- A similar argument applies for $\widehat{\alpha}$ and any linear combination of $\widehat{\alpha}$ and $\widehat{\beta}$.

Estimation of Variance

- It is natural to use the sum of squared residuals to obtain information about the variance.

$$
\begin{aligned}
e_{i}= & y_{i}-\hat{\alpha}-\hat{\beta} x_{i}=\left(y_{i}-\bar{y}\right)-\hat{\beta}\left(x_{i}-\bar{x}\right) \\
= & -(\hat{\beta}-\beta)\left(x_{i}-\bar{x}\right)+\left(\varepsilon_{i}-\bar{\varepsilon}\right) \\
& \Rightarrow \sum e_{i}^{2}=(\hat{\beta}-\beta)^{2} \sum\left(x_{i}-\bar{x}\right)^{2} \\
& +\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}-2(\hat{\beta}-\beta) \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right)
\end{aligned}
$$

- This will involve σ^{2} in expectation - term by term.
- First term:

$$
E(\hat{\beta}-\beta)^{2} \sum\left(x_{i}-\bar{x}\right)^{2}=\sigma^{2}
$$

Estimation of Variance cont'd.

- Second term:

$$
\begin{aligned}
E \sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2} & =E\left[\sum \varepsilon_{i}^{2}+n\left(\frac{1}{n} \sum \varepsilon_{i}\right)^{2}-2 \sum \varepsilon_{i} \bar{\varepsilon}\right] \\
& =n \sigma^{2}+\sigma^{2}-2 \sigma^{2}=(n-1) \sigma^{2}
\end{aligned}
$$

- Third term:

$$
\begin{aligned}
& E 2(\hat{\beta}-\beta) \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right) \\
= & 2 E\left[\frac{\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \sum\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right)\right] \\
= & 2 E \frac{\left[\sum\left(x_{i}-\bar{x}\right) \varepsilon_{i}\right]^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=2 \sigma^{2}
\end{aligned}
$$

Estimation of Variance cont'd.

- Adding the terms we get:

$$
E \sum e_{i}^{2}=(n-2) \sigma^{2}
$$

- This suggest the estimator:

$$
s^{2}=\left(\sum e_{i}^{2}\right) /(n-2)
$$

- This is an unbiased estimator
- It is a quadratic function of y
- This is all we can say without further assumptions

Summing Up

- With the assumption $E y_{i}=\alpha+\beta x_{i}$, we can calculate unbiased estimates of α and β (linear in y_{i}).
- Adding the assumption $V\left(y_{i} \mid x_{i}\right)=\sigma^{2}$ and $E \varepsilon_{i} \varepsilon_{j}=0$, we can obtain sampling variance for $\hat{\alpha}$ and $\hat{\beta}$, get an optimality property and an unbiased estimate for σ^{2}.
- Note the the optimality property may not be that compelling and that we have very little information about the variance estimate.

