Economics 620, Lecture 19: Introduction to Nonparametric and Semiparametric Estimation

Nicholas M. Kiefer

Cornell University

Good when there are lots of data and very little prior information on functional form.

Examples:

$$y = f(x) + \varepsilon$$
 (nonparametric)
 $y = z'\beta + f(x) + \varepsilon$ (partial linear)
 $y = f(z'\beta) + \varepsilon$ (index model)

Have to have some restrictions on f to avoid a perfect fit.

Differentiability to some order, and bounded derivatives.

Assume the errors are iid and arrange the observations in order of the x_i .

Consider $y = f(x) + \varepsilon$.

Moving average estimator:

 $\hat{f}(x_i) = k^{-1} \sum y_j$ for k values of j centered on i.

Let k increase with the sample size, but more slowly than n.

$$\hat{f}(x_i) = k^{-1} \sum y_j = k^{-1} \sum f(x_j) + k^{-1} \sum \varepsilon_j
= f(x_i) + f'(x_i)k^{-1} \sum (x_j - x_i)
+ \frac{1}{2}k^{-1}f''(x_i) \sum (x_j - x_i)^2 + k^{-1} \sum \varepsilon_j$$

f' is multiplied by zero if x is symmetric around x_i .

$$\hat{f}(x_i)=f(x_i)+24^{-1}(k/n)^2f''+k^{-1}\sum arepsilon_j$$
 approximately. Hence
$$\hat{f}(x_i)=f(x_i)+O((k/n)^2)+O_p(k^{-1/2}).$$

Note these "errors" are bias and variance

$$(\hat{f}(x_i) - f(x_i))^2 = O((k/n)^4) + O_p(k^{-1}).$$

Consistent if $k \to \infty$ and $k/n \to 0$.

"Best" trades off bias and variance at the same rate: $(k/n)^4$ looks like k^{-1} . Or $k = O(n^{4/5})$, implying

$$(\hat{f}(x_i) - f(x_i))^2 = O_p(n^{-4/5}).$$

 $n^{-4/5}$ is the best possible rate.

However, this has asymptotic bias (proportional to f'') - so let k go a little slower to infinity. Then the bias term disappears.

Interpretation????

JUST A TRICK!!!

Generalization: Kernel Regression

$$\hat{f}(x_i) = \sum w_j(x_i)y_j.$$

Really just weighted local averages.

Kernel: K(u) bounded, symmetric around zero, integrates to 1 (a normalization).

Examples:

Uniform, Bartlett, Normal (not drawn)

$$w_i(x_i) = K((x_j - x_i)/\lambda)(\sum K((x_j - x_i)/\lambda))$$

 λ is like k; in fact $k = 2\lambda n$.

Convergence rate is optimized (at $n^{-4/5}$) when $\lambda = O(n^{-1/5})$.

 λ is the bandwidth.

Usually assume a faster rate to eliminate the bias term in constructing confidence intervals. (JUST A TRICK.)

Smoothness Restrictions:

Example:
$$|f'(x)| < L$$

Solve min
$$\sum (y_i - \hat{y}_i)^2$$
 s.t. $|(\hat{y}_i - \hat{y}_j)/(x_i - x_j)| < L$.

Adding monotonicity adds the constraint

$$\hat{y}_i < \hat{y}_j$$
 for $x_i < x_j$.

Concavity adds another constraint.

Rates of convergence depend on the dimension of x (here 1) and on the number of derivatives. Maximal rate is $n^{-2m/(2m+d)}$ where m is # derivatives and d is the dimension of x.

Selection of bandwidth?

Try a few and look at the results and residuals!!

Formally, use cross valdiation.

CV: fit \hat{f}_{-i} using all data except the ith observation, then predict $\hat{f}_{-i}(x_i)$. Then calculate

$$CV(\lambda) = n^{-1} \sum (y_i - \hat{f}_{-i}(x_i))^2.$$

Choose λ to minimize this function.

Requires a lot of computation.

Partial Linear Model

$$y = z\beta + f(x) + \varepsilon$$

The amazing result is that β can be estimated at the parametric rate.

$$y - E(y|x) = y - E(z|x)\beta - f(x)$$

= $(z - E(z|x))\beta + \varepsilon$.

Suggests regressing y - Ey|x on z - Ez|x.

Estimate these conditional expectations by nonparametric kernel regression.

Extends easily to higher dimensional z (estimate many conditional expectation functions and do the regression).

Index Models

$$y = f(x'\beta) + \varepsilon$$

Here x is k-dimensional - the linear index $x'\beta$ affects y nonparametrically.

For fixed β , f can be estimated, for example, with kernel regression, as \hat{f}_{β} . Estimate β by minimizing

$$n^{-1}\sum(y_i-\hat{f}_{\beta}(x_i'\beta))^2.$$

There is a lot of work on this problem. A basic result is that β can be estimated at the usual rate (variance like n^{-1}).

Binary y generalizes logit, probit.

Index Models 2

Identification:

Note f and β are not separately identified. A normalization is necessary (typically one of the $\beta=1$).

To estimate f consistently, at least one of the regressors must be continuous.

(Think about it - we will use differentiability assumptions on f.)

Of course, also $\sum x_i x_i'$ must have full rank.

A little more is required.

Specification Testing

NP estimation of residual variance:

$$y_i = f(x_i) + \varepsilon_i$$
 arranged in order of x, with $|f'| < L$

$$s^{2} = 1/2n^{-1}\sum(y_{i} - y_{i-1})^{2}$$

$$E(s^{2}) = 1/2n^{-1}\sum(f(x_{i}) - f(x_{i-1}))^{2} + 1/2En^{-1}\sum(\varepsilon_{i} - \varepsilon_{i-1})^{2}$$

First term looks like $(f'[x_i - x_{i-1}])^2 < (L/n)^2$ (x cont. distributed) Cross product?

Specification Testing 2

Second term is σ^2 so the estimator is consisent.

Asymptotic distribution:

$$n^{1/2}(s^2-\sigma^2)\to N(0,\sigma^4).$$

To test against a parametric alternative, calculate s_a^2 from the alternative and consider

$$n^{1/2}(s_a^2-s^2)/s^2\to N(0,1)$$

reject if large.

Higher Dimensions are Problems

Suppose
$$y = f(x) = f(x_1, x_2) + \varepsilon$$
.

Estimate $f(x_i)$ by taking an average of the y in a neighborhood of x_i . Suppose the neighborhood is a $\lambda \times \lambda$ square?

W/uniform x on the unit square, each neighborhood has about $\lambda^2 n$ observations.

$$\hat{f}(x_i) = (\lambda^2 n)^{-1} \sum y_j
= (\lambda^2 n)^{-1} \sum f(x_j) + (\lambda^2 n)^{-1} \sum \varepsilon_j
\geq f(x_i) + O(\lambda^2) + O_p(1/(\lambda n^{1/2})).$$

Same arguments as before, but now have λ instead of $\lambda^{1/2}$.

Higher Dimensions are Problems 2

Consistency requires $\lambda \geq 0$ and $\lambda n^{1/2} \geq \infty$.

The optimal rate reduces bias and variance at the same rate. This implies $\lambda = O(n^{1/6})$. Then

$$(\hat{f}-f)^2=O_p(n^{-2/3}).$$

This rate is optimal and is slower then the rate in the 1-dimensional model.

The same arguments work for kernel estimators in higher dimensions.

Many variations are available (different kernels, bandwidth choices, neighborhoods, etc.).

Higher Dimensions are Problems 3

Want, say, 1% of data to form a local average (or local weighted average w/kernel).

Uniform observations, 1 dim, unit interval, local is a .01 length interval. 2 dim, unit square, local is $.01^{1/2} = .1$ unit square - 1/10 the range in each dimension.

Generally, $.01^{1/p}$ where p is the dim. Gets nonlocal fast.

Picture?

Mean distance to origin increases w/dimension - most points are "near" the boundary.

The source of most of this lecture and a great reference on applied nonparametric and semiparametrics (like the partial linear model) is Adonis Yatchew (2003).

Semiparametric Regression for the Applied Econometrician, Cambridge University Press.