Economics 620, Lecture 16: Estimation of Simultaneous Equations Models

Nicholas M. Kiefer
Cornell University

Consider $y_{1}=Y_{2} \gamma+X_{1} \beta+\varepsilon_{1}$ which is an equation from a system.
We can rewrite this at $y_{1}=Z \delta+\varepsilon_{1}$ where $Z=\left[\begin{array}{ll}Y_{2} & X_{1}\end{array}\right]$ and $\delta=\left[\gamma^{\prime} \beta^{\prime}\right]^{\prime}$.
Note that Y_{2} is jointly determined with y_{1}, so

$$
\operatorname{plim}(1 / N) Z^{\prime} \varepsilon_{1} \neq 0 \text { (usually). }
$$

IV Estimation:

The point of IV estimation is to find a matrix of instruments W so that

$$
\operatorname{plim} \frac{W^{\prime} \varepsilon_{1}}{N}=0
$$

and

$$
\operatorname{plim} \frac{W^{\prime} Z}{N}=Q
$$

where Q is nonsingular.

The IV estimator is $\left(W^{\prime} Z\right)^{-1} W^{\prime} y_{1}$. As in the lecture on dynamic models, multiplying the model by the transpose of the matrix of instruments yields $W^{\prime} y_{1}=W^{\prime} Z \delta+W^{\prime} \varepsilon_{1}$ which gives $\hat{\delta}_{I V}$.

Asymptotic distribution of $\hat{\delta}_{I V}$:
Note that $\hat{\delta}_{I V}-\delta=\left(W^{\prime} Z\right)^{-1} W^{\prime} \varepsilon_{1}$. Assume that

$$
\frac{W^{\prime} \varepsilon_{1}}{\sqrt{N}} \rightarrow N\left(0, \sigma^{2} \frac{W^{\prime} W}{N}\right) .
$$

(Is this a sensible assumption? Recall the CLT.)
Then

$$
\sqrt{N}\left(\hat{\delta}_{I V}-\delta\right) \rightarrow N\left(0, \sigma^{2} \sum_{\delta}\right)
$$

where

$$
\sum_{\delta}=N\left(W^{\prime} Z\right)^{-1} W^{\prime} W\left(W^{\prime} Z\right)^{-1}=(1 / N) Q^{-1} W^{\prime} W Q^{-1}
$$

The question is what to use for W. Suppose we use X.
Multiplying by the tranpose of the matrix of instruments gives $X^{\prime} y_{1}=X^{\prime} Z \delta+X^{\prime} \varepsilon_{1}$.

For this system of equations to have a solution, $X^{\prime} Z$ has to be square and nonsingular. When is this possible?

Note the following dimensions: X is $N \times K, X_{1}$ is $N \times K_{1}$ and Y_{2} is $N \times\left(G_{1}-1\right)$. This, of course, requires $K=K_{1}+G_{1}-1$. (Recall the order condition: $K \geq K_{1}+G_{1}-1$.)

Thus, the above procedure works when the equation is just identified.
The resulting IV estimates are indirect least squares which we saw last time.

Suppose $K<K_{1}+G_{1}-1$. Then what happens? Consider the supply and demand example. This is the underidentified case.

Suppose $K>K_{1}+G_{1}-1$. Then $X^{\prime} y_{1}=X^{\prime} Z \delta+X^{\prime} \varepsilon_{1}$ is K equations in $K_{1}+G_{1}-1$ unknowns (setting $X^{\prime} \varepsilon_{1}$ to 0 which is its expectation). We could choose $K_{1}+G_{1}-1$ equations to solve for δ - there are many ways to do this, typically leading to different estimates. This is the overidentified case.

Another way to look at this case is as a regression model - with K "observations" on the dependent variable.

We could apply the LS method, but the GLS is more efficient since $V\left(X^{\prime} \varepsilon_{1}\right)=\sigma^{2}\left(X^{\prime} X\right)\left(\neq \sigma^{2} I\right)$.

The observation matrix is $X^{\prime} y_{1}$ and $X^{\prime} Z$. GLS gives the estimator

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1} .
$$

In the just-identified case (where $X^{\prime} Z$ is invertible),

$$
\begin{aligned}
\hat{\delta} & =\left(X^{\prime} Z\right)^{-1} X^{\prime} X\left(Z^{\prime} X\right)^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1} \\
& =\left(X^{\prime} Z\right)^{-1} X^{\prime} y_{1}=\hat{\delta}_{I V} \text { with } W=X .
\end{aligned}
$$

TWO-STAGE LEAST SQUARES:

Return to the overidentified case:

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1}
$$

Proposition: The estimator

$$
\hat{\delta}=\left[Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z\right]^{-1} Z^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y_{1}
$$

is the two-stage least squares (2SLS or TSLS) estimator.
Why is $\hat{\delta}$ called the TSLS estimator?
Let $\bar{M}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=I-M$.
Then $\hat{\delta}=\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} y_{1}$.

We will write out the expression for $\hat{\delta}$.

$$
\hat{\delta}=\left[\begin{array}{cc}
\hat{Y}_{2}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\hat{Y}_{2}^{\prime} y_{1} \\
X_{1}^{\prime} y_{1}
\end{array}\right]
$$

Now: $\bar{M} Y_{2}=X\left(X^{\prime} X\right)^{-1} X^{\prime} Y_{2}=\hat{Y}_{2}=X \hat{\Pi}_{2}$ which is the LS predictor of Y_{2}.

$$
Z^{\prime} \bar{M} Z=\left[\begin{array}{cc}
Y_{2}^{\prime} \bar{M} Y_{2} & Y_{2}^{\prime} \bar{M} X_{1} \\
X_{1}^{\prime} \bar{M} Y_{2} & X_{1}^{\prime} \bar{M} X_{1}
\end{array}\right]
$$

Note that $X_{1}^{\prime} \bar{M} X_{1}=X_{1}^{\prime} X_{1} \cdot\left(R\left[X_{1}\right] \subset R[X] \Rightarrow \bar{M} X_{1}=X_{1} ; \bar{M} X=X\right)$.
Also: $\quad Y_{2}^{\prime} \bar{M} Y_{2}=Y_{2}^{\prime} \bar{M} \bar{M} Y_{2}=\hat{Y}_{2}^{\prime} \hat{Y}_{2}$.
So,

$$
\hat{\delta}=\left[\begin{array}{cc}
\hat{Y}_{2}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\hat{Y}_{2}^{\prime} y_{1} \\
X_{1}^{\prime} y_{1}
\end{array}\right]
$$

$\hat{\delta}$ is the coefficient vector from a regression of y_{1} on \hat{Y}_{2} and X_{1}. Interpretation as 2SLS? Interpretation as IV?

Proposition: 2SLS is IV estimation with $W=\left[\hat{Y}_{2} X_{1}\right]$.
Proof: Note that

$$
W^{\prime} Z=\left[\begin{array}{ll}
\hat{Y}_{2}^{\prime} Y_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right]=\left[\begin{array}{cc}
\hat{Y}^{\prime} \hat{Y}_{2} & \hat{Y}_{2}^{\prime} X_{1} \\
X_{1}^{\prime} \hat{Y}_{2} & X_{1}^{\prime} X_{1}
\end{array}\right] .
$$

This is the matrix appearing inverted in $\hat{\delta}$. \square

Asymptotic distribution of $\hat{\delta}$: We know this from IV results.
Note that $\hat{\delta}=\delta+\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} \varepsilon_{1}$. The asymptotic variance of $N^{1 / 2}(\hat{\delta}-\delta)$ is the asymptotic variance of $N^{1 / 2}\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} \varepsilon_{1}=u$.

$$
\begin{aligned}
\operatorname{Var}(u) & \left.=N \sigma^{2}\left(Z^{\prime} \bar{M} Z\right)^{-1} Z^{\prime} \bar{M} Z\left(Z^{\prime} \bar{M} Z\right)^{-1}\right] \\
& =N \sigma^{2}\left(Z^{\prime} \bar{M} Z\right)^{-1}
\end{aligned}
$$

Remember to remove the N in calculating estimated variance for $\hat{\delta}$. (Why?)

Estimation of σ^{2} :

$$
\hat{\sigma}^{2}=\left(y_{1}-Z \hat{\delta}\right)^{\prime}\left(y_{1}-Z \hat{\delta}\right) / N
$$

Note that $Z=\left[Y_{2} X_{1}\right]$ appears in the expressions for $\hat{\sigma}^{2}$, not $\left[\hat{Y}_{2} X_{1}\right]$.
If you regress y_{1} on \hat{Y}_{2} and X_{1}, you will get the right coefficients but the wrong standard errors.

GEOMETRY OF 2SLS:

Take:
$N=3$ (observations)
$K=2$ (exogenous variables),
$K_{1}=1$ (included exogenous variables) and
$G_{1}=2$ (included endogenous variables - one is normalized).
How many parameters?

2SLS

\hat{Y}_{2} is in the plane spanned by X_{1} and $X_{2} . \quad y_{1}$ is projected to the plane spanned by \hat{Y}_{2} and X_{1}.

Note that X_{1} and X_{2} and X_{1} and \hat{Y}_{2} span the same plane. (Why?)
Model is just identified (projection of both stages is to the same plane).
What happens if the model is overidentified? (For example, $K_{1}=0$, that is, no included regressors).

What if underidentified? (For example, $K_{2}=2$, that is, no excluded regressors).

