Economics 620, Lecture 13: Time Series |

Nicholas M. Kiefer

Cornell University

Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series |



AUTOCORRELATION

Consider y = XG4+ uwhereyis T x1, Xis T x K, is Kx1anduis
T x 1.

We are using T and not N for sample size to emphasize that this is a time
series.

The natural order of observations in a time series suggest possible
approaches to parametrizing the covariance matrix parsimoniously.

First order autoregression: AR(1)

This is the case where u; = pu;_1 + € where ¢; are independent and
identically distributed with

Ee; =0 and V(g;) = 02
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First order moving average: MA(1)

This is the case where uy = &; — Og4_1.

Random walk: (AR(1) with p = 1)

This is the case where u; — u;_1 = &¢.

Integrated moving average: /IMA(1)

This is the case where uy — u;_1 = &4 — Oe4_1.
Autoregressive moving average (1,1): ARMA(1,1)

ug — pup1 =er — er 1
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Autoregressive of order p: AR(p)
Uy = prUs—1 + polr—2 + ... + pyli_p + E¢.

Moving average of order p: MA(p)

p
ur =€ — E Oice—i
i=1

Proposition: A first order autoregressive (AR(1)) process is an infinite
order moving average(MA(o0)) process.

Proof:
_ _ 2
ur = p(pus—p +er—1) +er = (e¢ + per—1 + p°er—a + ...).

Thus

00
ur = Zr:O prst—f
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AR(1) arises frequently in economic time series.

Let uy = pur—1 + € which is an AR(1) process.

Note that Eu; = 0 and V/(u;) = o?(1 + p? + p* +...) = 02 /(1 — p?).
Also note that

cov(ug, ur_1) = po? + p3c® + p°c? + ...
=po?/(1—p?) = pV(w),

and similarly

cov(us, ur—s) = p*V(ur) = p°a? /(1 — p?). Thus

1 P 0> p:’2
1 _
Eud — 1322 P P P
pT-1 pT—2 ,7-3 1
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This is a symmetric matrix.

This is a variance-covariance matrix characterized by two parameters
which fits into the GLS framework.

Consider the LS estimator 3 under the assumption of an AR(1) process for
the u;'s:

1. What are the properties of B?
2. What is the associated variance estimate?

In the LS method, V/(33) is estimated by s?(X'X)~L. Is this correct in the
AR case?
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Under the assumption of an AR(1) error process, V/(}3) should be
(02/1 = p?))(X' X)X VX(X'X) L.

with V representing the variance-covariance matrix above.

If X variables are trending up and p > 0 (usually ~ 0.8 or 0.9), the s will
probably underestimate o2 /(1 — p?) and (X’X) 1 X' VX(X'X)~1.

Point: We can seriously understate standard errors if we ignore
autocorrelation.
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"SPURIOUS REGRESSIONS IN ECONOMETRICS":

(Granger-Newbold)

(Journal of Econometrics, 1974)

Consider a simple regression model.
Let y; = a+ Bx; + €.

Suppose the true process with ¢ and £*independent are

yt = pyt—1+¢¢ and
Xt = p*X¢_1 +€f

The data are really independent AR(1) processes.
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Suppose we regress y on x. Then if T =20 and p = p* = 0.9, then
ER? = 0.47 and F ~ 18.

This falsely indicated a significant contribution of x.

Sampling experiments for y; = o + Bx; + ¢ with T =50 and y, x
independent random walks were carried out, and t-statistics on 5 in 100
trials were calculated.

If these statistics were actually distributed as t, we would expect t to be
less than 2, 95 times. We actually observe t to be less than 2, 23 times,
and t greater that 2, 77 times. There is spurious significance. The
situation only becomes worse with more regressors.

Point: High R? does not "balance out" the effects of autocorrelation.
Good time-series fits are not to be believed without diagnostic tests.
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TESTING FOR AUTOCORRELATION:

The important thing is to look at the residuals.
Definition: The Durbin-Watson statistic ("d" or DW") is

d = X:tT:z(et*etfl)2 __ e'Ae

EtT:1 e? e'e
where
1 -1 0
-1 2 -1
A= 0o -1 2

Which is a T x T symmetric matrix
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In other words, d is the sum of squared successive differences divided by
sum of squares.

The Durbin-Watson statistic is probably the most commonly used test for
autocorrelation, although the Durbin h-statistic is appropriate in wider
circumstances and should usually be calculated as well.

Distribution of d:

Note: We want to calculate the distribution under the hypothesis that
p =0, i.e. no autocorrelation. Then a surprisingly large value indicated
autocorrelation.
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Intuition:
E(er —er1)? = 0% + 0% — 2cov(et,e1-1) = 20°

Then, why is Ed # 27
1. There is one less term in the numerator
2. The use if e rather that € makes the distribution depends on x.

Note: d is a ratio of quadric forms in normals.
Why isn’t it distributed a F?
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Durbin-Watson test:

Durbin and Watson give bounds d; and dy which are both less than 2.

If d > d|, then reject the null hypothesis of no autocorrelation. This
indicated positive autocorrelation.

If di < d < dy, then the result is ambiguous.

If the statistic d calculated from the sample is greater than 2, the
indication is negative autocorrelation. Then use the bounds of d; and dy,
and check against 4 — d.

If 4 — d < d;, then reject the null.

If 4 — d > dy, then do not reject.
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Interpretation of the Durbin-Watson test:

1. This is a test for general autocorrelation, not just for AR(1) processes.

2. This test cannot be used when regressors include lagged values of y, for
example,

ye = a+ Boyi—1 + Bixe +&¢

Other tests are available in this case.
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Other tests:

1. Wallis test: This is used for quarterly data. The test statistic is
dy = Zt 5(ef er— 4)
Zt let

2. Durbin’s h test: This is used when there are lagged y's. We regress
e: on e;_1, X¢ and as many lagged y's as are included in the regression.
Then test (with "t") the coefficient of e;_1. A significant coefficient on
e;_1 indicates presence of autocorrelation. Note that this test is quite
easy to do and it "works" when the Durbin-Watson test doesn't. This is a
good test to use.
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ESTIMATION WITH AN AR(1) ERROR PROCESS:

Consider y = X3 + u where uy = pus—1 + ¢ with E(u) = 0 and

1 p P p; ;
| _
Euu' = {7 f ' P P = =0
pT-1 pT=2 ,T-3 1
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1 —p 0
—p 14 p? . —p
Q1l=_1 =PP
7 . . . S
—p I+p° —p
0 . —p 1
which is a "band" matrix.
So,
V1—-p2 0
—p 1
_ 1
P= s 0 —p

—p 1
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Matrix P will be used to transform the model.
The first transformed observation is

V1= =0 Byxna/1 = p? + uiy/1— p2,

and all others are
Yt — PYt—-1 = Z/}le 5h(Xh,t - th,tfl) + ur — pur—1.

Note that xj, ; denotes the tth observation on the ht" explanatory variable.

The GLS transformation puts the model back in standard form as
expected.
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1. Given p, the estimation is by the LS method. We write the sum of
squares as S(p). Then minimization with respect to p is a simple
numerical problem.

2. ML can also be reduced to a one-dimensional maximization problem
which is straightforward.

3. Early two-step methods which often dropped the first observation are
less satisfactory. Never use the Cochrane-Orcutt (CORC) procedure.

4. The extension to higher-order AR or MA processes is straightforward.
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