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AUTOCORRELATION

Consider y = X� + u where y is T � 1, X is T � K , � is K � 1 and u is
T � 1.

We are using T and not N for sample size to emphasize that this is a time
series.

The natural order of observations in a time series suggest possible
approaches to parametrizing the covariance matrix parsimoniously.

First order autoregression: AR(1)

This is the case where ut = �ut�1 + "t where "t are independent and
identically distributed with

E"t = 0 and V ("t) = �2.
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First order moving average: MA(1)

This is the case where ut = "t � �"t�1.

Random walk: (AR(1) with p = 1)

This is the case where ut � ut�1 = "t .

Integrated moving average: IMA(1)

This is the case where ut � ut�1 = "t � �"t�1.

Autoregressive moving average (1,1): ARMA(1; 1)

ut � �ut�1 = "t � �"t�1
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Autoregressive of order p: AR(p)

ut = �1ut�1 + �2ut�2 + :::+ �put�p + "t .

Moving average of order p: MA(p)

ut = "t �
pX
i=1

�i"t�i

Proposition: A �rst order autoregressive (AR(1)) process is an in�nite
order moving average(MA(1)) process.

Proof:

ut = �(�ut�2 + "t�1) + "t = ("t + �"t�1 + �2"t�2 + :::).

Thus

ut =
P1
r=0 �

r "t�r
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AR(1) arises frequently in economic time series.

Let ut = �ut�1 + "t which is an AR(1) process.

Note that Eut = 0 and V (ut) = �2(1+ �2 + �4 + :::) = �2=(1� �2).

Also note that

cov(ut ; ut�1) = ��2 + �3�2 + �5�2 + :::
= ��2=(1� �2) = �V (ut),

and similarly

cov(ut ; ut�s ) = �sV (ut) = �s�2=(1� �2). Thus

Euu0 = �2

1��2

2664
1 � �2 : : : �T�1

� 1 � : : : �T�2

: : : : : : :
�T�1 �T�2 �T�3 : : : 1

3775
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This is a symmetric matrix.

This is a variance-covariance matrix characterized by two parameters
which �ts into the GLS framework.

Consider the LS estimator �̂ under the assumption of an AR(1) process for
the ut�s:

1. What are the properties of �̂?

2. What is the associated variance estimate?

In the LS method, V (�̂) is estimated by s2(X 0X )�1. Is this correct in the
AR case?
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Under the assumption of an AR(1) error process, V (�̂) should be
(�2=1� �2))(X 0X )�1X 0VX (X 0X )�1.

with V representing the variance-covariance matrix above.

If X variables are trending up and � > 0 (usually t 0:8 or 0:9), the s2 will
probably underestimate �2=(1� �2) and (X 0X )�1X 0VX (X 0X )�1.

Point: We can seriously understate standard errors if we ignore
autocorrelation.
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"SPURIOUS REGRESSIONS IN ECONOMETRICS":
(Granger-Newbold)

(Journal of Econometrics, 1974)

Consider a simple regression model.
Let yt = �+ �xt + "t .

Suppose the true process with " and "�independent are
yt = �yt�1 + "t and
xt = ��xt�1 + "�t

The data are really independent AR(1) processes.
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Suppose we regress y on x . Then if T = 20 and � = �� = 0:9, then
ER2 = 0:47 and F t 18.

This falsely indicated a signi�cant contribution of x.

Sampling experiments for yt = �+ �xt + "t with T = 50 and y ; x
independent random walks were carried out, and t-statistics on � in 100
trials were calculated.

If these statistics were actually distributed as t, we would expect t to be
less than 2, 95 times. We actually observe t to be less than 2, 23 times,
and t greater that 2, 77 times. There is spurious signi�cance. The
situation only becomes worse with more regressors.

Point: High R2 does not "balance out" the e¤ects of autocorrelation.
Good time-series �ts are not to be believed without diagnostic tests.
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TESTING FOR AUTOCORRELATION:

The important thing is to look at the residuals.

De�nition: The Durbin-Watson statistic ("d" or DW") is

d =
PT
t=2(et�et�1)2PT

t=1 e
2
t

= e 0Ae
e 0e

where

A =

0BB@
1 �1 0 :
�1 2 �1 :
0 �1 2 :
: : : :

1CCA
Which is a T � T symmetric matrix
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In other words, d is the sum of squared successive di¤erences divided by
sum of squares.

The Durbin-Watson statistic is probably the most commonly used test for
autocorrelation, although the Durbin h-statistic is appropriate in wider
circumstances and should usually be calculated as well.

Distribution of d:

Note: We want to calculate the distribution under the hypothesis that
� = 0, i.e. no autocorrelation. Then a surprisingly large value indicated
autocorrelation.
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Intuition:
E ("t � "t�1)2 = �2 + �2 � 2cov("t ; "t�1) = 2�2

Then, why is Ed 6= 2?

1. There is one less term in the numerator

2. The use if e rather that " makes the distribution depends on x.

Note: d is a ratio of quadric forms in normals.
Why isn�t it distributed a F?
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Durbin-Watson test:

Durbin and Watson give bounds dL and dU which are both less than 2.

If d > dL, then reject the null hypothesis of no autocorrelation. This
indicated positive autocorrelation.

If dL < d < dU , then the result is ambiguous.

If the statistic d calculated from the sample is greater than 2, the
indication is negative autocorrelation. Then use the bounds of dL and dU ,
and check against 4� d .

If 4� d < dL, then reject the null.

If 4� d > dU , then do not reject.
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Interpretation of the Durbin-Watson test:

1. This is a test for general autocorrelation, not just for AR(1) processes.

2. This test cannot be used when regressors include lagged values of y , for
example,

yt = �+ �0yt�1 + �1xt + "t

Other tests are available in this case.
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Other tests:

1. Wallis test: This is used for quarterly data. The test statistic is
d4 =

Pt
t=5(et�et�4)2PT

t=1 e
2
t

.

2. Durbin�s h test: This is used when there are lagged y�s. We regress
et on et�1, xt and as many lagged y�s as are included in the regression.
Then test (with "t") the coe¢ cient of et�1. A signi�cant coe¢ cient on
et�1 indicates presence of autocorrelation. Note that this test is quite
easy to do and it "works" when the Durbin-Watson test doesn�t. This is a
good test to use.
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ESTIMATION WITH AN AR(1) ERROR PROCESS:

Consider y = X� + u where ut = �ut�1 + "t with E (u) = 0 and

Euu0 = �2

1��2

2664
1 � �2 ::: �T�1

� 1 � ::: �T�2

: : : ::: :
�T�1 �T�2 �T�3 ::: 1

3775 = �2

1��
.

Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series I 16 / 19



Thus


�1 = 1
1��2

266664
1 �� :: : 0
�� 1+ �2 :: : ��
: : :: : :
�� : :: 1+ �2 ��
0 : :: �� 1

377775 = P 0P
which is a "band" matrix.

So,

P = 1p
1��2

266664
p
1� �2 0 :: : :
�� 1 :: : :
0 �� :: : :
: : :: : :
: : :: �� 1

377775.
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Matrix P will be used to transform the model.

The �rst transformed observation isp
1� �2y1 =

PK
h=1 �hxh;1

p
1� �2 + u1

p
1� �2,

and all others are
yt � �yt�1 =

PK
h=1 �h(xh;t � �xh;t�1) + ut � �ut�1.

Note that xh;t denotes the tth observation on the hth explanatory variable.

The GLS transformation puts the model back in standard form as
expected.
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Notes:

1. Given �, the estimation is by the LS method. We write the sum of
squares as S(�). Then minimization with respect to � is a simple
numerical problem.

2. ML can also be reduced to a one-dimensional maximization problem
which is straightforward.

3. Early two-step methods which often dropped the �rst observation are
less satisfactory. Never use the Cochrane-Orcutt (CORC) procedure.

4. The extension to higher-order AR or MA processes is straightforward.
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