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Example 1: Grouping (or data on averages)

Suppose the “true” model is y = X3 + ¢ where Ec = 0 and V/(¢) = o?/.

Suppose that the available data are [y X] arranged in M(> K) groups and
the group means are the only givens (e.g. city or firm averages). Thus,
we have to consider the model

y=XB6+¢
where j is M x 1 and X is M x K.

Now j = Gy where G is M x N. EE€ =0and V(&) = 0?GG'. Similarly,
X = GX.
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Then 5 o
Be = (X'(GG)TIX)TIX'(GG') Ty
with variance 6%(X’'(GG’)"1X)~1. In terms of the unobserved X and y,
Be = (X'@X)7'X'Qy
with @ = G'(GG')"1G. Q@ has an interesting structure.

Let's see what GG’ looks like.

With 3 observations in the first group, 4 in the second and 2 in the third,
we have

1 1 1

111000000
G=|000 3 1 £+ 200

000O0O0O0GO0 3 3
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GG' =

O Owi
OO
N O O

If P denotes the factor that will be used to transform the model to the
standard case, we have

o otk
= O O

otk o

V2

since PP' = GG’. Note that P just divides each observation by its
standard deviation.
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Example 2: GLS Prediction

Let Ey = X3 and V(y) =>_. Suppose we know Xy1, and we want to
predict yp1.

Note that yn41 = XNHB is unbiased. But ep41 is correlated with ¢.
How can this correlation be used to improve the forecast?

Let Ecyy1e = w where eyy1is1 x 1 and eis N x 1.
Let yn1 = c'y be a linear predictor.

Unbiasedness implies that E(Jny+1 — yn+1) =0 = (c’X — Xy41)B8. Thus
X = XN+1- (Why?)

The prediction error is c’e — ey 41 with variance ¢’ ¢ + 02 — 2c'w.

Minimize this variance subject to ¢’X = Xy using the multiplier 2.
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First order conditions yield

ERTIENPN

Solving for ¢, we get

ct = Zfl[l o X(XI Zfl X)flxl Zfl]w
+ XX T X) T X

using the first part of the partitioned inverse.

Note:
I =y = Xnp1Be + W' Sy — XBg)

which uses the correlation between ey11 and €. The last term is the
expectation of ey11 given e. > and w are usually modeled as functions
of a small number of parameters.

Professor N. M. Kiefer (Cornell University) Lecture 12: GLS Il 6 /19



SEEMINGLY UNRELATED REGRESSION EQUATIONS

(SURE): (Zellner)

Let yj = X;8; +¢;j=1,..., M where y; is N x 1, Xjis N x K, 3, is
K x1,and gjis N x 1.

Stacking up these M regressions yields y = X3 + € where
yis MN x 1,
X is MN x MK,
Bis MK x 1, and

cis MN x 1.
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Note that

N X1
y2 0
Ym 0
and
Eeci1e] Eei€)
Feel — Eeye]  Eegel

/ /
Eemey Eemey
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Suppose Eg¢jet = ojil. (Notation convenction: no square)

Then each equation satisfies the standard conditions but Eeje} = o/ # 0,
that is, the equations are correlated with each other. Think of
independent observtaions on a system of correlated equations.
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Let the M x M matrix 3" have elements o;; and 3.~ have elements o/’
(Note that 0¥ # 031.)

Then
0'11/ 0'12I UlMI
;L | ol o2l ... ooml
Egg _Z®I_ [} [ ] [}
omi! om2l ... omm!

where ® is the Kronecker product.
Note (Y- @/) L =St @l (Verify).

Thus B¢ = (X' (X @)X) X/ (St @l)y. Here

ol o2 . oM

21 22 2M

_ ol ocl ... oM
Y lel=

° ° °

oMl gM2p o gMMy
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Writing out BG gives

-1
R o1 X{Xy  oBX{Xy ... oMX{Xy
BG = ° [} L4
oMiXi, X1 oM X[, X ... oMMX], X

M 1y’
Zj:lajxlyj

M Mjyet ..
Zj:la XwYj

where the first term on the right hand side is (X/(3. "' ®/)X)~! and the
second term is X' (32" @/)y.

The “unbalanced” case, with different sample sizes for different equations,

is straightforward with appropriate changes in the dimensions of the
“stacked” matrices.
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Proposition 1: If oj; = 0 for i # j, then BG = ,@’ obtained by estimating
each equation by the LS method. In other words, when the equations are
not correlated with each other, estimation of each quation by the LS
method gives the GLS estimators. (Why?)

Proposition 2: If X; = X, = ... Xy, then BG = B obtained by estimating
each equation by the LS method.

Proof: Let X =/ ® X; where X is MN x MK, is M x M, and X is
N x K.

We know that B = (X' (3.t @1)X)1X (3.7t @1)y. Substituting for X
yields

Be=((loX) (T el ©X)) (1o X) (X @l)y.
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Using the property
(A1 ® B1)(A2 ® By) = AjAy ® B1 By,

~

Be = (X exix) (X eX])y
(/®(X1X1) )X1Y-

Note that (X{X1) ! X{y gives the vector of the LS estimators for the first
equation.
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Example: Here is an example which shows the efficiency gain over the LS
estimators.

Consider a two-equation system with X{X> = 0, that is, the regressors in
the equations are orthogonal, R[X;] N R[Xo] = @. Then

b [Xixa o T oMXin + 02Xy
¢ 0 o2X}X o Xy 4+ 0P Xy

A1 . . : .
Let 5 represent the vector of coefficients estimates for the first equation.
Then

1l _
Be = (X{X1) ' X{n

+(o? /o) (X X)) T Xy
Note that E ,B’IG = f.

We will show that V/( B¢) = (o11 — 02, /022) (X! X)L,
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. . ~1
Using the expression for 5, we can get

V(Be) = ou(X{X1) ™+ (012 /a™)2(X{X1) Lo
+2(02 /o) oo (X{ X)L, (Why?)

Recall that H o
ot o o o | _
o2l 522 Oo1 Oon -
This implies that

0'11 = 022/(0'110'22 — 0%2) and

ol? = —o12/(011022 — 0%2).

This is a simple trick to remember or reobtain the partitioned inversion
formula.
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Thusi,
V(B¢) = [o11 + (—012/022)%020 — 2(012/022)012] (X[ X1) L.

Herlcie
V(Bs) = (011 — 035 /022)(X{ X1) ! < on (X[ X1) L.

The second term in the variance gives the efficiency gain. It is useful to
divide by the variance of the LS estimator, 11 (X{X1)™!, to get relative
efficiency 1 — p? where p? is the correlation squared.
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Case of unknown covariance matrix (Feasible SURE):

Let ef = y; — XJBJ be the vector of LS residuals from equation j.
Define an M x M matrix S such that
S={Sy}j,1=1,2,...,M where

Sj/ = ejel/(N — K).

Note that ES =} . (That is, Sy is an unbiased estimator of >, = oj¢).

(If K and/or N are different in each equation, degrees of freedom have to
be adjusted.)

Using S instead of ) gives Zellner's estimator. This estimator will have
the same asymptotic distribution as §; calculated with known ).
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Note that the LS estimator is the same as the ML estimator, even with o2

unknown. This is not ture in the case of a GLS estimator. (Why not?)

Suppose we iterate:

1. Calculate S¥ using 8% (with ' the LS estimator B)
2. Calculate 8¥*1 using S in the GLS formula.
3. If |ﬁk+1 — Bk| < 1 where 7 is a small number, then stop. Else, go

to 1.

On convergence this gives the ML estimator.
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Time-series of cross sections

Consider yy = Xi8; +e¢ with t =1,2,..., T where y; is N x 1, X; is
Nx K, B,is Kx1, and g;is N x 1.

Notes:

1. Each equation corresponds to a time period; usually T is small and
N is large.

2. Allowing time correlation and estimating the T x T matrix >_ is
not difficult.

3. We often want to test 3, = 3 for all times or a subset.
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