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Example 1: Grouping (or data on averages)

Suppose the �true�model is y = X� + " where E" = 0 and V (") = �2I .

Suppose that the available data are [~y ~X ] arranged in M(> K ) groups and
the group means are the only givens (e.g. city or �rm averages). Thus,
we have to consider the model

~y = ~X� + ~"

where ~y is M � 1 and ~X is M � K .

Now ~y = Gy where G is M � N. E~" = 0 and V (~") = �2GG 0. Similarly,
~X = GX :
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Then
�̂G = (~X

0(GG 0)�1 ~X )�1 ~X 0(GG 0)�1~y

with variance �2( ~X 0(GG 0)�1 ~X )�1. In terms of the unobserved X and y ,

�̂G = (X
0QX )�1X 0Qy

with Q = G 0(GG 0)�1G . Q has an interesting structure.

Let�s see what GG 0 looks like.

With 3 observations in the �rst group, 4 in the second and 2 in the third,
we have

G =

24 1
3

1
3

1
3 0 0 0 0 0 0

0 0 0 1
4

1
4

1
4

1
4 0 0

0 0 0 0 0 0 0 1
2

1
2

35
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GG 0 =

24 1
3 0 0
0 1

4 0
0 0 1

2

35 :
If P denotes the factor that will be used to transform the model to the
standard case, we have

P =

264
1p
3

0 0

0 1p
4

0

0 0 1p
2

375
since PP 0 = GG 0. Note that P just divides each observation by its
standard deviation.
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Example 2: GLS Prediction

Let Ey = X� and V (y) =
P
. Suppose we know XN+1, and we want to

predict yN+1.

Note that ŷN+1 = XN+1�̂ is unbiased. But "N+1 is correlated with ".
How can this correlation be used to improve the forecast?

Let E"N+1" = w where "N+1 is 1� 1 and " is N � 1.
Let ŷN+1 = c 0y be a linear predictor.

Unbiasedness implies that E (ŷN+1 � yN+1) = 0 = (c 0X � XN+1)�. Thus
c 0X = XN+1. (Why?)

The prediction error is c 0"� "N+1 with variance c 0
P
c + �2 � 2c 0w .

Minimize this variance subject to c 0X = XN+1 using the multiplier 2�.
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First order conditions yield� P
X

X 0 0

� �
c
��

�
=

�
w

XN+1

�
Solving for c , we get

c� =
P�1[I � X (X 0

P�1 X )�1X 0
P�1]w

+
P�1 X (X 0

P�1 X )�1XN+1

using the �rst part of the partitioned inverse.

Note:
ŷN+1 = c�0y = XN+1�̂G + w

0P�1(y � X �̂G )

which uses the correlation between "N+1 and ". The last term is the
expectation of eN+1 given e.

P
and w are usually modeled as functions

of a small number of parameters.
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SEEMINGLY UNRELATED REGRESSION EQUATIONS
(SURE): (Zellner)

Let yj = Xj�j + "j j = 1; :::;M where yj is N � 1, Xj is N � K , �j is
K � 1, and "j is N � 1.

Stacking up these M regressions yields y = X� + " where

y is MN � 1,

X is MN �MK ,

� is MK � 1, and

" is MN � 1.
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Note that

y =

26664
y1
y2
...
yM

37775 ; X =
2664
X1 0 : : : 0
0 X2 : : : 0
0 0 : : : 0
0 0 : : : XM

3775; � =
26664
�1
�2
...
�M

37775
and

E""0 =

2664
E"1"01 E"1"02 : : : E"1"0M
E"2"01 E"2"02 : : : E"2"0M
� � : : : �

E"M "01 E"M "02 : : : E"M "0M

3775
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Suppose E"i"0i = �ii I . (Notation convenction: no square)

Then each equation satis�es the standard conditions but E"i"0j = �ij I 6= 0,
that is, the equations are correlated with each other. Think of
independent observtaions on a system of correlated equations.
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Let the M �M matrix
P
have elements �ij and

P�1 have elements �ij .
(Note that �ij 6= ��1ij .)

Then

E""0 =
P

I =

2664
�11I �12I : : : �1M I
�21I �22I : : : �2M I
� � : : : �

�M1I �M2I : : : �MM I

3775
where 
 is the Kronecker product.

Note (
P

I )�1 =

P�1 
I . (Verify).

Thus �̂G = (X
0(
P�1 
I )X )�1X 0(

P�1 
I )y . Here

P�1 
I =

2664
�11I �12I : : : �1M I
�21I �22I : : : �2M I
� � : : : �

�M1I �M2I : : : �MM I

3775
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Writing out �̂G gives

�̂G =

24 �11X 01X1 �12X 01X2 : : : �1MX 01XM
� � : : : �

�M1X 0MX1 �M2X 0MX2 : : : �MMX 0MXM

35�1

�

264
PM
j=1 �

1jX 01yj
...PM

j=1 �
MjX 0M yj

375
where the �rst term on the right hand side is (X 0(

P�1 
I )X )�1 and the
second term is X 0(

P�1 
I )y :

The �unbalanced�case, with di¤erent sample sizes for di¤erent equations,
is straightforward with appropriate changes in the dimensions of the
�stacked�matrices.
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Proposition 1: If �ij = 0 for i 6= j , then �̂G = �̂ obtained by estimating
each equation by the LS method. In other words, when the equations are
not correlated with each other, estimation of each quation by the LS
method gives the GLS estimators. (Why?)

Proposition 2: If X1 = X2 = :::XM , then �̂G = �̂ obtained by estimating
each equation by the LS method.

Proof: Let X = I 
 X1 where X is MN �MK ; I is M �M, and X1 is
N � K .

We know that �̂G = (X
0(
P�1 
I )X )�1X 0(

P�1 
I )y. Substituting for X
yields

�̂G = ((I 
 X1)0(
P�1 
I )(I 
 X1))�1(I 
 X1)0(

P�1 
I )y :
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Using the property

(A1 
 B1)(A2 
 B2) = A1A2 
 B1B2,

�̂G = (
P�1 
X 01X1)�1(

P�1 
X 01)y
= (I 
 (X 01X1)�1)X 01y :

Note that (X 01X1)
�1X 01y gives the vector of the LS estimators for the �rst

equation.
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Example: Here is an example which shows the e¢ ciency gain over the LS
estimators.

Consider a two-equation system with X 01X2 = 0, that is, the regressors in
the equations are orthogonal, R[X1] \ R[X2] = ?. Then

�̂G =

�
�11X 01X1 0

0 �22X 02X2

��1 �
�11X 01y1 + �12X 01y2
�21X 02y1 + �22X 02y2

�
Let �̂

1
G represent the vector of coe¢ cients estimates for the �rst equation.

Then

�̂
1
G = (X 01X1)

�1X 01y1
+(�12=�11)(X 01X1)

�1X 01y2:

Note that E �̂
1
G = �1.

We will show that V ( �̂
1
G ) = (�11 � �212=�22)(X 01X1)�1.
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Using the expression for �̂
1
G , we can get

V (�̂
1
G ) = �11(X 01X1)

�1 + (�12=�11)2(X 01X1)
�1�22

+2(�12=�11)�12(X 01X1)
�1: (Why?)

Recall that �
�11 �12

�21 �22

� �
�11 �12
�21 �22

�
= I .

This implies that
�11 = �22=(�11�22 � �212) and
�12 = ��12=(�11�22 � �212).

This is a simple trick to remember or reobtain the partitioned inversion
formula.
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Thus,
V (�̂

1
G ) = [�11 + (��12=�22)2�22 � 2(�12=�22)�12] (X 01X1)�1.

Hence
V (�̂

1
G ) = (�11 � �212=�22)(X 01X1)�1 < �11(X 01X1)�1.

The second term in the variance gives the e¢ ciency gain. It is useful to
divide by the variance of the LS estimator, �11(X 01X1)

�1, to get relative
e¢ ciency 1� �2 where �2 is the correlation squared.
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Case of unknown covariance matrix (Feasible SURE):

Let ej = yj � Xj �̂j be the vector of LS residuals from equation j .

De�ne an M �M matrix S such that
S = fSjlg j ; l = 1; 2; :::;M where
Sjl = e 0je1=(N � K ).

Note that ES =
P
. (That is, Sjl is an unbiased estimator of

P
j` = �j`).

(If K and/or N are di¤erent in each equation, degrees of freedom have to
be adjusted.)

Using S instead of
P
gives Zellner�s estimator. This estimator will have

the same asymptotic distribution as �̂G calculated with known
P
.
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Note that the LS estimator is the same as the ML estimator, even with �2

unknown. This is not ture in the case of a GLS estimator. (Why not?)

Suppose we iterate:

1. Calculate Sk using �k (with �1 the LS estimator �̂).
2. Calculate �k+1 using Sk in the GLS formula.
3. If j�k+1 � �k j < � where � is a small number, then stop. Else, go
to 1.

On convergence this gives the ML estimator.
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Time-series of cross sections

Consider yt = Xt�t + "t with t = 1; 2; :::;T where yt is N � 1, Xt is
N � K , �t is K � 1, and "t is N � 1.

Notes:

1. Each equation corresponds to a time period; usually T is small and
N is large.
2. Allowing time correlation and estimating the T � T matrix

P
is

not di¢ cult.
3. We often want to test �t = �t 0 for all times or a subset.
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