Economics 620, Lecture 11: Generalized Least Squares (GLS)

Nicholas M. Kiefer

Cornell University

In this lecture, we will consider the model $y=X \beta+\varepsilon$ retaining the assumption $E y=X \beta$.

However, we no longer have the assumption $V(y)=V(\varepsilon)=\sigma^{2}$ I. Instead we add the assumption $V(y)=V$ where V is positive definite. Sometimes we take $V=\sigma^{2} \Omega$ with $\operatorname{tr} \Omega=N$.

As we know, $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. What is $E \hat{\beta}$?
Note that $V(\hat{\beta})=\left(X^{\prime} X\right)^{-1} X V X\left(X^{\prime} X\right)^{-1}$ in this case.
Is $\hat{\beta}$ BLUE? Does $\hat{\beta}$ minimize $e^{\prime} e$?

The basic idea behind GLS is to transform the observation matrix $[y X]$ so that the variance in the transformed model is I (or $\sigma^{2} I$).

Since V is positive definite, V^{-1} is positive definite too. Therefore, there exists a nonsingular matrix P such that $V^{-1}=P^{\prime} P$.

Transforming the model $y=X \beta+\varepsilon$ by P yields $P y=P X \beta+P \varepsilon$.
Note that $E P \varepsilon=P E \varepsilon=0$ and $V(P \varepsilon)=P E \varepsilon \varepsilon^{\prime} P^{\prime}=P V P^{\prime}-P\left(P^{\prime} P\right)^{-1} P^{\prime}=I$. (We could have done this with $V=\sigma^{2} \Omega$ and imposed $t r \Omega=N$ if useful.) That is, the transformed model $P y=P X \beta+P \varepsilon$ satisfies the conditions under which we developed Least Squares estimators.

Thus, the LS estimator is BLUE in the transformed model. The LS estimator for β in the model $P y=P X \beta+P \varepsilon$ is referred to as the GLS estimator for β in the model $y=X \beta+\varepsilon$.

Proposition: The LGS estimator for β is

$$
\hat{\beta}_{G}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y
$$

Proof: Apply LS to the transformed model. Thus,

$$
\begin{aligned}
\hat{\beta}_{G} & =\left(X^{\prime} P^{\prime} P X\right)^{-1} X^{\prime} P^{\prime} P y \\
& =\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y
\end{aligned}
$$

Proposition: $V\left(\hat{\beta}_{G}\right)=\left(X^{\prime} V^{-1} X\right)^{-1}$.
Proof: Note that $\hat{\beta}_{G}-\beta=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \varepsilon$. Thus,

$$
\begin{aligned}
V\left(\hat{\beta}_{G}\right) & =E\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \varepsilon \varepsilon^{\prime} V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-1} \\
& =\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} V V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-1} \\
& =\left(X^{\prime} V^{-1} X\right)^{-1}
\end{aligned}
$$

Aitken's Theorem: The GLS estimator is BLUE. (This really follows from the Gauss-Markov Theorem, but let's give a direct proof.)

Proof: Let b be an alternative linear unbiased estimator such that $b=\left[\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}+A\right] y$.

Unbiasedness implies that $A X=0$.

$$
\begin{aligned}
V(b)= & {\left[\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}+A\right] V } \\
& \times\left[\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}+A^{\prime}\right] \\
= & \left(X^{\prime} V^{-1} X\right)^{-1}+A V A^{\prime}+\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} A^{\prime} \\
& +A X\left(X^{\prime} V^{-1} X\right)^{-1}
\end{aligned}
$$

The last two terms are zero. (Why?)
The second term is positive semi-definite, so $A=0$ is best.

What does GLS minimize?

Recall that $(y-X b)^{\prime}(y-X b)$ is minimized by $b=\hat{\beta}$
(i.e., $(y-X b)$ is minimized in length by $b=\hat{\beta}$).

Consider $P(y-X b)$. The length of this vector is

$$
(y-X b)^{\prime} P^{\prime} P(y-X b)=(y-X b)^{\prime} V^{-1}(y-X b)
$$

Thus, GLS minimizes $P(y-X b)$ in length.
Let $\tilde{e}=\left(y-X \hat{\beta}_{G}\right)$. Note that satisfies

$$
X^{\prime} V^{-1}\left(y-X \hat{\beta}_{G}\right)=X^{\prime} V^{-1} \tilde{e}=0 .(\text { Why? })
$$

Then

$$
\begin{aligned}
(y-X b)^{\prime} V^{-1}(y-X b)= & \left(y-X \hat{\beta}_{G}\right)^{\prime} V^{-1}\left(y-X \hat{\beta}_{G}\right) \\
& +\left(b-\hat{\beta}_{G}\right)^{\prime} X^{\prime} V^{-1} X\left(b-\hat{\beta}_{G}\right)
\end{aligned}
$$

Note that $X^{\prime} \tilde{e} \neq 0$ in general.

Estimation of Variance

Let $V(y)=\sigma^{2} \Omega$ where $\operatorname{tr} \Omega=N$.
Choose P so $P^{\prime} P=\Omega^{-1}$. Then the variance in the transformed model $P y=P X \beta+P \varepsilon$ is $\sigma^{2} I$. Our standard formula gives $s^{2}=\tilde{e}^{\prime} \tilde{e} /(N-K)$ which is the unbiased estimator for σ^{2}.

Now we add the assumption of normality: $y \sim N\left(X \beta, \sigma^{2} \Omega\right)$.
Consider the log likelihood:

$$
\begin{aligned}
\ell\left(\beta \sigma^{2}\right)= & c-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \ln |\Omega| \\
& -\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
\end{aligned}
$$

Proposition: The GLS estimator is the ML estimator for β. Why?)

Proposition: $\sigma_{M L}^{2}=\tilde{e}^{\prime} \tilde{e} / N$ (as expected).
Proposition: $\hat{\beta}_{G}$ and \tilde{e} are independent. (How would you prove this?)
Testing:
Testing procedures are as in the ordinary model. Results we have developed under the standard set-up will be applied to the transformed model.

When does $\hat{\beta}_{G}=\hat{\beta}$?

1. $\hat{\beta}_{G}=\hat{\beta}$ holds trivially when $\sigma^{2} I=V$.
2. $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ and

$$
\begin{aligned}
& \hat{\beta}_{G}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y \\
& \hat{\beta}_{G}=\hat{\beta} \\
& \Rightarrow\left(X^{\prime} X\right)^{-1} X^{\prime}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \\
& \Rightarrow V X=X\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} X=X R
\end{aligned}
$$

(What are the dimensions of these matrices?)
Interpretation: In the case where $K=1, X$ is an eigenvector of V. In general, if the columns of X are each linear combinations of the same K eigenvectors of V, then $\hat{\beta}_{G}=\hat{\beta}$. This is hard to check and would usually be a bad assumption.

Example: Equicorrelated case: $V(y)=V=I+\alpha 11^{\prime}$ where 1 is an N -vector of ones.

The LS estimator is the same as the GLS estimator if X has a column of ones.

Case of unknown Ω :

Note that there is no hope of estimating Ω since there are $N(N+1) / 2$ parameters and only N observations. Thus, we usually make some parametric restriction as $\Omega=\Omega(\theta)$ with θ a fixed parameter. Then we can hope to estimate θ consistently using squares and cross products of LS residuals or we could use ML.

Note that it doesn't make sense to try to consistently estimate Ω since it grows with sample size.

Thus, "consistency" refers to the estimate of θ.
Defintion: $\hat{\Omega}=\Omega(\hat{\theta})$ is a consistent estimator of Ω if and only if $\hat{\theta}$ is a consistent estimator of θ.

Feasible GLS (FGLS) is the estimation method used when Ω is unknown. FGLS is the same as GLS except that it uses an estimated Ω, say $\hat{\Omega}=\Omega(\hat{\theta})$, instead of Ω.

Proposition: $\hat{\beta}_{F G}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} y$
Note that $\hat{\beta}_{F G}=\beta+\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} \varepsilon$. The following proposition follows easily from this decomposition of $\hat{\beta}_{F G}$.

Proposition: The sufficient conditions for $\hat{\beta}_{F G}$ to be consistent are

$$
p \lim \frac{X^{\prime} \hat{\Omega}^{-1} X}{N}=Q
$$

where Q is positive definite and finite, and

$$
p \lim \frac{X^{\prime} \hat{\Omega}^{-1} \varepsilon}{N}=0
$$

It takes a little more to get a distribution theory. From our discussion of $\hat{\beta}_{G}$, it easily follows that

$$
\sqrt{N}\left(\hat{\beta}_{G}-\beta\right) \rightarrow N\left(0, \sigma^{2}\left(\frac{X^{\prime} \Omega^{-1} X}{N}\right)^{-1}\right)
$$

What about the distribution of $\hat{\beta}_{F G}$ when Ω is unknown?
Proposition: Sufficient conditions for $\hat{\beta}_{F G}$ and $\hat{\beta}_{G}$ to have the same asymptotic distribution are that

$$
\begin{aligned}
& p \lim \frac{X^{\prime}\left(\hat{\Omega}^{-1}-\Omega^{-1}\right) X}{N}=0 \\
& p \lim \frac{X^{\prime}\left(\hat{\Omega}^{-1}-\Omega^{-1}\right) e}{\sqrt{N}}=0
\end{aligned}
$$

Proof: Note that

$$
\sqrt{N}\left(\hat{\beta}_{G}-\beta\right)=\left(\frac{X^{\prime} \Omega^{-1} X}{N}\right)^{-1}\left(\frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{N}}\right)
$$

and

$$
\sqrt{N}\left(\hat{\beta}_{F G}-\beta\right)=\left(\frac{X^{\prime} \hat{\Omega}^{-1} X}{N}\right)^{-1}\left(\frac{X^{\prime} \hat{\Omega}^{-1} \varepsilon}{\sqrt{N}}\right)
$$

Thus

$$
p \lim \sqrt{N}\left(\hat{\beta}_{G}-\hat{\beta}_{F G}\right)=0
$$

if

$$
p \lim \frac{X^{\prime} \hat{\Omega}^{-1} X}{N}=p \lim \frac{X^{\prime} \Omega^{-1} X}{N}
$$

and

$$
p \lim \frac{X^{\prime} \hat{\Omega}^{-1} \varepsilon}{\sqrt{N}}=p \lim \frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{N}}
$$

We are done. (Recall that $p \lim (x-y)=0 \Rightarrow$ the random variables x and y have the same asymptotic distribution.)

Summing up:

Consistency of $\hat{\theta}$ implies consistency of the FGLS estimator. A little more is required for the FGLS estimator to have the same asymptotic distribution as the GLS estimator. These conditions are usually met.

Small-sample properties of FGLS estimators:

Proposition: Suppose $\hat{\theta}$ is an even function of ε (i.e., $\hat{\theta}(\varepsilon)=\hat{\theta}(-\varepsilon)$). (This holds of $\hat{\theta}$ depends on squares and cross products of residuals.) Suppose ε has a symmetric distribution. Then $E \hat{\beta}_{F G}=\beta$ if the mean exists.

Proof: The sampling error

$$
\hat{\beta}_{F G}-\beta=\left(X^{\prime} \hat{\Omega}(\hat{\theta})^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}(\hat{\theta})^{-1} \varepsilon
$$

has a symmetric distribution around zero since ε and $-\varepsilon$ give the same value of $\hat{\Omega}$. If the mean exists, it is zero.

Note that this property is weak. It is easily obtained but it is not very useful.

General advice:

-Do note use too many parameters in estimating the variance-covariance matrix or the increase in sampling variances will outweigh the decrease in asymptotic variance.
-Always calculate LS as well as GLS estimators. What are the data telling you if these differ a lot?

