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Neyman-Pearson Lemma

Lesson: Good tests are based on the likelihood ratio.

The proof is easy in the case of simple hypotheses:

H0 : x � p0(x) = f (x j�0)

H1 : x � p1(x) = f (x j�1)

The last equality is provided so this can look like a more familiar
parametric test.
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Suppose we have a sample x = (x1; :::; xn) 2 Rn and we want to choose
between H0 and H1. (Note that pi is the likelihood function.) De�ne a
decision function d : Rn ! f0; 1g such that d(x) = 0 when H0 is accepted
and d(x) = 1 when H1 is accepted. Thus, d de�nes a partition of the
sample space. The following diagrams illustrate situations where n = 2.
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Let A be the region in which d = 0. Ac is the complement of A in Rn.
Then the error probabilities are

� = P(d = 1jH0) =
R
Ac p0(x)dx

� = P(d = 0jH1) =
R
A p1(x)dx :

Note: � is the size of the test - the probability of an error of the �rst
type, and � is the operating characteristic of the test - the probability of
an error of the second type. (1� �) is the power of the test.
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You would like to choose a test minimizing both error probabilities, but
there are tradeo¤s. � can be set to 0, its minimum, by choosing d = 0
always; but then � = 1. This is the only way � can be assured to be 0.
Similarly, � = 0 if d = 1, but then � = 1. Now, � = 1=2 and � = 1=2
can be obtained by �ipping a coin and ignoring the data. Thus we have 3
points on the �frontier� available without data.

The �information budget constraint�with no data is the solid line in the
following �gure:
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Good tests using data will get a constraint like the curve (of course, (0; 1)
and (1; 0) are always the endpoints). (Exercise: Why does this constraint
have this shape?)
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This is like an income e¤ect - information gives a better tradeo¤ between
the two types of errors.

De�nition: p0=p1 is the likeihood ratio where pi = f (x j�i ) is the joint
distribution of data.

Let A(T ) = fx : p0=p1 > Tg (a set in Rn) and �� =
R
Ac p0(x)dx ;

�� =
R
A p1(x)dx .

A de�nes a decision rule d = 0 if x 2 A and d = 1 if x 2 Ac .

Let B be any other region in Rn with error probabilities � and �. Then:

Neyman-Pearson Lemma:
If � � ��, then � � ��.

What does this say?
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Proof : De�ne IA(x) = 1 if x 2 A and IB(x) = 1 if x 2 B. Then
(IA � IB )(p0(x)� Tp1(x)) � 0.
To check this, look at both cases: If x 2 A, then IA = 1 and
p0=p1 > T .... (think about this)

Multiplication yields:
0 � IAp0 � IATp1 � IBp0 + IBTp1.

If this holds for any given x , it certainly holds on the average. Thus
0 �

R
A p0 � Tp1dx �

R
B p0 � Tp1dx .

Hence (recall de�ntions of �, �, ��, ��),
0 � (1� ��)� T�� � (1� �) + T� = T (� � ��) + (�� ��).

Thus, if � < ��, � must be > ��, and vice versa. �
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The result says that when designing tests we should look at the likelihood
ratio.

Indi¤erence curves for error probabilities:

Let (�0; �0) and (�1; �1) be error probabilities associated with two
di¤erent tests. Suppose you are indi¤erent between these tests, then you
do not care if the choice is made with a coin �ip.

But this de�nes another test with error probabilities �2 = 1=2�0 + 1=2�1

and �2 = 1=2�0 + 1=2�1, and you are indi¤erent between this new test
and the others. Continuing, you derive a linear indi¤erence curve.
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Note that the practice of �xing � (e.g., 0.05) for all sample sizes () all
values of �) corresponds to lexicographic preferences, which are not
continuous and therefore illogical in this setting.

Example: Consider the following composite hypothesis:

H0: � = �0 (null hypothesis)
H1: � 6= �0 (alternative hypothesis)

Here we �nd the ML estimator �̂ and consider the likelihood ratio
f (x j�0)=f (x j�̂). Basically we are choosing the "best" value under the
alternative hypothesis for the denominator.

Exercise: Consider the regression model
y = X1�1 + X2�2 + " where " � N(0; �2).
Is the F -test for �2 = 0 a likelihood ratio test?
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Asymptotic Testing:

In this section, we will study the three tests: Likelihood Ratio (LR), Wald
and Score (Lagrange Multiplier - LM) tests.

Background: (Asymptotics)

`(�) =
P
ln p(x j�) is the log likelihood function. De�ne the score function

s(�) =
d`
d�

and

i(�) = �E
�
d2 ln p

d�2

�
= E

"�
d ln p
d�

�2#
:

Professor N. M. Kiefer (Cornell University) Lecture 10: Asymptotic Testing 11 / 23



By CLT,
1p
n
s0 � N(0; i0)

where �0 is the true value, s0 = s(�0) and i0 = i(�0).

Testing:

Let �̂ be the ML estimator. Let d0 = �̂ � �0 denote the vector of
deviations.

Then, n�1=2s0 = i0d0n1=2 asymptotically. Note that this is the same as

n1=2d0 = i�10 s0n�1=2:

Further, 2[`(�̂)� `(�0)] = nd 00i0d0 asymptotically. (To get this result,
expand `(�̂) around �0 and take probability limits.)
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Consider the hypothesis:

H0: � = �0
H1: � 6= �0

Note that the restriction is � = �0.

Likelihood Ratio Test:

Likelihood ratio:

LR = p(x j�0)=max� p(x j�) = p(x j�0)=p(x j�̂)
The test statistic is �2 ln LR = 2[`(�̂)� `(�0)] and it is distributed as �2
(with degrees of freedom equal to the number of retsrictions imposed)
under the null hypothesis.
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Wald Test:

The test statistic is nd 00i(�̂)d0, and it is distributed as �2 under the null
hypothesis.

Score Test:

The test statistic is n�1s 00i
�1
0 s0, and it is distributed as �2 under the null

hypothesis.

Note: p lim i(�̂) = i(�0) = i0 when the restriction is true and real that
p lim(nd 00i0d0 � n�1s 00i�10 s0) = 0 since asymptotically

n1=2d0 = i�10 s0n�1=2
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So, the tests are asymptotically equivalent. Note that the Wald and LM
tests are appealing because of their asymptotic equivalence to the LR test,
which is an optimal test in the Neyman-Pearson sense.

Discussion:

-What are the computational requirements for these tests?
-Which is best?
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Geometry
Likelihood Ratio test

For illustrative purposes, � is one-dimensional.

Here, we look at the change in the log likelihood function `(�) evaluated
at �̂ and �0, `(�̂) and `(�0). If the di¤erence between is too large, we
reject H0.
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Geometry
Wald Test

Here, we look at the deviation in parameter space.

The di¤erence between �̂ and �0 implies a larger di¤erence between `(�̂)
and `(�0) for the more curved log likelihood function. Evidence against
the hypothesized value �0 depends on the curvature of the log likelihood
function measured by ni(�̂).

Hence the test statistic is n(�̂ � �0)2i(�̂).
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Geometry
Score test

Here, we look at the slope of the log likelihood function at the
hypothesized value of �0.

Since two log likelihood functions can have equal values of s0 with
di¤erent distances between �̂ and �0, s0 must be weighed by the change in
slope (i.e. curvature). A bigger change in slope implies less evidence
against the hypothesized value �0.

Hence the test statistic n�1s20 i
�1
0 .
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Why is the score test also called the Lagrange Multipler test?

The log likelihood function is maximzied subject to the restriction � = �0:

max
�
`(�)� �(� � �0):

This gives

�̂ = �0 and � = s(�0) =
@`

@�0
:
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