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Suggested Solutions for Problem Set #6

1. (Logit Model, NLS, MLE)

(a) Recall the the following normal equation for NLS (For details, see
the lecture note 18).

F (b�)0(y � f(b�)) = 0
Apply the above to our case. Then, we have the following.

�2
X 1

(1 + exp(��� �xi))2
exp(��� �xi)(y � exp(��� �xi)) = 0;

�2
X 1

(1 + exp(��� �xi))2
xi exp(��� �xi)(y � exp(��� �xi)) = 0

NL estimator b�NL; b�NL solves the above system equations.

(b) Conditional variance of di is Pr(di = 1 j xi)[1�Pr(di = 1 j xi)]: Note
that this comes from the properties of binomial random variables.
Therefore, Exact formula for Conditional Variance is;

V ar(di j xi) =
1

1 + exp(��� �xi)
�
�
1� 1

1 + exp(��� �xi)

�
=

1

1 + exp(��� �xi)
� exp(��� �xi)
1 + exp(��� �xi)

(c) The Second-round estimator is better. This takes into account the
information about the variance structure of the error terms. This
argument is in line with the fact that GLS is better than OLS when
heteroskedasticity is present.

(d) First, we have to �gure out the likelihood function of individual
obaservations.

P (di j xi) =
�

1

1 + exp(��� �xi)

�di
�
�

exp(��� �xi)
1 + exp(��� �xi)

�1�di
1



Then, loglikelihood function for individual observation is;

lnP (di j xi) = di ln
�

1

1 + exp(��� �xi)

�
+(1�di) ln

�
exp(��� �xi)

1 + exp(��� �xi)

�
The loglikelihood function is;

l(�; �) =
X

di ln

�
1

1 + exp(��� �xi)

�
+
X
(1�di) ln

�
exp(��� �xi)

1 + exp(��� �xi)

�
We can obtain the ML estimator from the �rst order conditions of
the loglikelihood function.

@l(�; �)

@�
=

X
di

�
1� 1

1 + exp(��� �xi)

�
�
X
(1� di)

�
1

1 + exp(��� �xi)

�
= 0;

@l(�; �)

@�
=

X
di

�
1� 1

1 + exp(��� �xi)

�
xi

�
X
(1� di)

�
1

1 + exp(��� �xi)

�
xi

= 0

ML estimators, b�ML; b�ML solves the above.
Tips for obtaining FOC in the logit model:
Suppose that Fi(xi�) = 1

1+exp(�xi�) (xi can be a vector in this tip).

Then, exp(�xi�) = 1
Fi
� 1:

Also, F 0i =
�

1
1+exp(�xi�)

�2
exp(�xi�) � xi = F 2i (

1
Fi
� 1)xi = Fi(1 �

Fi)xi
Using the above tip, we can easily get the FOC.
(Using the similar method, the hessian can be obtained by the for-
mula that H = �

P
Fi(1� Fi)xix0i)

2. (Measurement error problem, NLS, IV, GMM)

(a) Note that ti is not observable, so we have to use t� as a proxy. Then,
we can run Nonlinear Least Squares (NLS).
However, there may be a "endogeneity" problem, that is, t� and error
term might be correlated. If endogeneity is present, we cannot obtain
consistent estimator from Nonlinear Least Squares.
To avoid this problem, we�re going to use instrumental variable tech-
nique (IV). Solve z0(d � Ed) = 0, where z is N � K instrumental
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variable vector, d�Ed is N � 1 vector (you may understand how it
is deifned). If this is overidenti�ed case, we cannot have a solution.
So let�s apply "GLS" idea, that is, solve the following.

Argmin
�;�

(d� Ed)0z V ar(z0(d� Ed))�1 z0(d� Ed)

But, what is V ar(z0(d�Ed))�1? V ar(z0(d�Ed) have the following
form.

V ar(z0(d�Ed)) = z0

0BBB@
F1(1� F1) 0 � � � 0

0 F2(1� F2) � � � 0
...

...
. . .

...
0 0 � � � FN (1� FN )

1CCCA z;
where Fi = F (x0i� + �bt�i ): Hence, in order to evaluate the above
consistently, we need consistent estimator for � and �. I suggest 2-
stage method, which is analogous to feasible 3SLS. In the �rst stage,
solve the following:

Argmin
�;�

(d� Ed)0z z0(d� Ed)

where the weighting matrix is just an identity matrix. Although it
may not be e¢ cient, we can obtain a consistent estimator. Let us call
it (e�;et): Then evaluate V ar(z0(d� Ed) at this consistent estimator.
Let us call it e
: As a second stage, solve the following:

Argmin
�;�

(d� Ed)0z e
�1 z0(d� Ed) = 0
The resulting estimator is more e¢ cient than that from the �rst stage.

(b) Note that b�IV is consistent in any case, so long as z is exogenous.
However, b�NLS is consistent only when endogeneity is not present.
Therefore, we can test measurement error problem by comparing b�IV
and b�NLS : If they are too di¤erent, we can say that there is a serious
measurement error problem (endogeneity problem).

3. (Logit, MLE)

(a) Since we have N/3 iid Bernoulli observations, say y1; : : : ; yN=3, MLEbF1 =Pfxi=1g yi=(N=3): Therefore, we have

E( bF1) =

P
fxi=1gE(yi)

N=3
=

P
fxi=1g F1

N=3
= F1;

V ar( bF1) =

P
fxi=1g V ar(yi)

(N=3)2
=
F1(1� F1)
N=3

:
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(b) Log likelihood function is as follows:

l(�) =
X�

yi ln

�
1

1 + exp(�xi�)

�
+ (1� yi) ln

�
exp(�xi�)

1 + exp(�xi�)

��
:

MLE is the maximizer of this likelihood function. For the asymp-
totic variance, we calculate (expected) hessian matrix, H. If we de-
�ne �i = f1=(1 + exp(�xi�))g; we have H = �

P
�i(1 � �i)xix0i.

Therefore, we have

p
N(b� � �) d! N

 
0;

�
p lim

1

N

X
�i(1� �i)xix0i

��1!

= N

 
0;

�
1

3
F1(1� F1) +

4

3
F2(1� F2)

��1!
:

(c) Since bF1 = 1=(1+exp(�b�)), from the delta method and the fact that
F 01(�) = F1(1� F1); we have

p
N( bF1�F1) d! N

 
0; F 21 (1� F1)2

�
1

3
F1(1� F1) +

4

3
F2(1� F2)

��1!
:

(d) The asymptotic variance of bF1 in (c) is smaller than or equal to the
variance from (a). But (c) requires more computation and the logistic
assumption should be the correct speci�cation.

(e) If the logit speci�cation is correct, estimators should converge to the
true values F1; F2 and F3: Therefore we can compute them with the
estimator from (a) which are certainly consistent estimators.

4. (MLE)

(a) Note that ci exp(�yi(xi�)) is a conditional density function (likeli-
hood function) given xi and � and that yi follows exponential distri-
bution. So, we must have the following.Z 1

0

ci exp(�y(xi�))dy = 1

Then, we have ci = xi�:
For a sample of N independent observations (yi; xi);

(b) First, construct loglikelihood function.

pi(yi j xi; �) = xi� exp(�yi(xi�))
ln pi = ln(xi�)� yi(xi�)
l(�) =

X
ln pi =

X
ln(xi�)�

X
yi(xi�)
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Second, let�s calculate a score function. This is the First Order Con-
dition of the above loglikelihood function.

S =
@l(�)

@�
=
X x0i

xi�
�
X

yix
0
i (This is k � 1 vector)

Let�s compute a hessian function.

H =
@2l(�)

@�@�0
= �

X x0ixi
(xi�)2

(This is k � k vector)

(c) We know that
p
N(�ML � �)

Asy:� N(0; i�10 ):

And i0 = �p lim(HN ):
Therefore, the asymptotic distribution is as follows.

p
N(�ML � �)

Asy:� N

0B@0; p lim
0@P x0ixi

(xi�)2

N

1A�1
1CA

Now you want to plot some "residuals" to check the speci�cation.
Hence, you need a transformation zi of yi, given xi and �; such
that the distribution of z does not depend on x and �: Consider the
random variable zi = 1� exp(�yi(xi�)):

(d) Note that 1 � exp(�yi(xi�)) is a CDF of exponential distribution,
so zi can take values from 0 to 1. Let�s call it F, that is, zi = F (yi)
given xi; �:
Then, P (zi � ez) = P (F (yi) � ez) = P (F�1(F (yi)) � F�1(ez)) since
F is strictly increasing in (0,1).
Now, we have P (F�1(F (yi)) � F�1(ez)) = P (yi � F�1(ez)): And we
know that yi follows exponential distribution, so P (yi � F�1(ez)) =
F (F�1(ez))) = ez:
The last formula implies that P (zi � ez) = ez and that zi follows a
uniform distribution whose support is (0,1).
Suppose you calculate z using �ML instead of � and you plot the
empirical cdf F-hat(t)= (#zi � t)=N:

(e) If the model is correct and the estimate is good, our empirical cdf
should look like real cdf (cdf of uniform distribution). Therefore, the
plot should look like 45 degree line in (0, 1).

5. (K-variable Regression)

(a) We have

b� =

P
xiyiP
x2i

=

P
x4iP
x2i
:
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So, conditional expectation and conditional variance of b� are

Ex(b
�) =

P
x4iP
x2i
;

V arx(b
�) = 0:

(b) Note that, when x follows standard normal, we have

E(xn) = (n� 1)(n� 3) : : : 1 when n is odd

= 0 when n is even.

Therefore, we have

b =
Exy

Ex2
=
Ex4

Ex2
=
3

1
= 3:

(c) Note that

t =
bb

S=
pP

x2i
and p limbb = 3;

and standard error is S=
qX

x2i :

S2 can be represented as

S2 =

P
(yi �bbxi)2
N � 1 =

P
y2i � 2bbPxiyi +bb2Px2i

N � 1

=
N

N � 1

P
x6i � 2bbPx4i +

bb2Px2i
N

:

Therefore,

p limS2 = p lim
N

N � 1 � p lim
P
x6i � 2bbPx4i +

bb2Px2i
N

= 6:

So we have p limS =
p
6 (Apply the law of large numbers above):

Furthermore,

t =
3p
6

qX
x2i =

p
N � 3p

6
�
rP

x2i
N

� 3p
6

p
N:

and standard error is approximately
p
6=N . Next, R2 can be ap-

proximated as follows:

R2 =
bb2Px2iP

y2i
=
bb2Px2i =NP

y2i =N

p�! 9

15
=
3

5
:
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(d) Now we estimate the model, yi = b1xi + b2x2i + "i: Note that xi and
x2i are orthogonal since E(x

3
i ) = 0. Hence, we have

bb2 = Px2i yiP
x4i

=

P
x5i =

p
NP

x4i =
p
N

p! 0:

For a plot of actual vs. �tted values, draw y = x3 and y = 3x on the
same xy graph.

6. (Gauss-Markov Thorem)

(a) The OLS esimator, b�OLS is (X 0X)�1X 0y: Clearly, it is a linear esti-
mator, where c0 = (X 0X)�1X 0:

(b) There can be a lot of examples for this. Suppose that c0 = 2(X 0X)�1X 0:
Then, T (y) = 2(X 0X)�1X 0y: It is easy to show that E[T (y)] = 2� 6=
� unless � = 0:

(c) MSE of the OLS estimator

m(T (y); �)OLS = E[(T (y)� �)(T (y)� �)0]
= E[(X 0X)�1X 0y � �)(X 0X)�1X 0y � �)0]
= E[(X 0X)�1X 0��0X(X 0X)�1]

= (X 0X)�1X 0E[��0]X(X 0X)�1

= �2(X 0X)�1

(d) MSE of an arbitrary linear estimator

m(T (y); �) = E[(T (y)� �)(T (y)� �)0]
= E[(c0y � �)(c0y � �)0]
= E[c0yy0c� �y0c� c0y�0 + ��0]
= E[c0(X� + �)(X� + �)0c� �(X� + �)0c� c0(X� + �)�0 + ��0]
= E[c0X��0X 0c+ c0X��0c+ c0��0X 0c+ c0��0c� ��0X 0c� ��0c

�c0X��0 � c0��0 + ��0]
= c0X��0X 0c+ c0X�E(�0)c+ c0E(�)�0X 0c+ c0E(��0)c� ��0X 0c

��E(�0)c� c0X��0 � c0E(�)�0 + ��0

= c0X��0X 0c+ �2c0c� ��0X 0c� c0X��0 + ��0

(e) Yes, this is true. In order for boundedness to be guaranteed, unbi-
asedness should be satis�ed. Then, we can apply the Gauss Markov
Theorem.

(f) Consider the MSE of an arbitrary linear estimator, m(T (y); �) =
c0X��0X 0c + �2c0c � ��0X 0c � c0X��0 + ��0: This is a quadratic
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function of �: This function can take positive or negative in�nity
since � 2 Rk:
Therefore, to obtain bounded MSE, there should be no term including
� in the above formula. The only way of excluding � is to have
that c0X = I: Then, only �2c0c will be left. This is nothing but a
unbiasedness condition of linear estimator. Hence, we can apply the
Gauss Markov Theorem; The OLS estimator has minimum variance.

7. (NLS, IV, GMM)

(a) Noting that the homogeneous ODE, y0 � �y = 0 has the solution
yh = Cebx, we can �nd a particular solution yp =  + �x: Hence
the solution is y =  + �x + Cebx: From the initial condition we
have C = 1: The model would be yi =  + �xi + e

�xi + "i with
"i � iid(0; �2):

(b) The normal equation for a nonlinear model y = F (x; ; �; �) is
F 0(; �; �)(y � F (; �; �)) = 0. Since F 0 = (1; x; xe�x)T ; the nor-
mal equation is X�

yi � ( + �xi + e�xi)
�
= 0;X

xi
�
yi � ( + �xi + e�xi)

�
= 0;X

xie
�xi
�
yi � ( + �xi + e�xi)

�
= 0:

(c) Given a value of �; it becomes a standard LS problem. We can
solve for  and � in terms of � then the problem is one dimensioanl
optimization with respect to � only.

(d) "normal equation" become z0(y � Ey) = 0. In terms of GMM, you
have k moment conditions. In this overidenti�ed case, these equation
cannot be solved directly and GLS must be used on them. Thus
minimize (y�Ey)0z(z0z)�1z0(y�Ey) with FOC (normal equations)
F 0z(z0z)�1z0(y � Ey) = 0:

(e) We can compute the estimator from (b) and (d). If x is endogenous,
they should be di¤erent signi�cantly.
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