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1. (Measurement Error, IV)

(a) This is a measurement error problem.

yi = x0i� + �t
�
i + "i

t�i = �ti + �i

The problem is that "i and �i might be correlated. If this is the
case, we cannot obtain consistent estimators by OLS, which is called
endogeneity problem.

(b) Get bt�i by regressing t�i on z. Then, get b� from estimating the model,
yi = x

0
i� + �bt�i + "i:

(c) We can use the Wu-Hasman test. Under the null hypothesis that
there is no endogeneity,

p
N(b�OLS �b�2SLS) follows normal distribu-

tion asymptotically.
This is equivalent to testing a signi�cance of e� in the following eqata-
tion.

yi = x
0
i� + �t

�
i +

e�t�i + "i
The test-statistics is t-test for e� = 0:

2. (Probit Model)

(a) We can obtain NLS estimator by solving the following problem:

Argmin
�

NX
i=1

(di � �(xi�))2:

The corresponding First Order Condition (or Normal equations) is
as follows:

�2
NX
i=1

(di � �(xi�))�(xi�)xi = 0;

where �(xi�) is a normal pdf.
The resulting NLS estimator is biased due to its nonlinear feature,
but consistent as discussed in the class. It is not the most e¢ cient
estimator, since MLE can achieve Cramer-Rao bound.
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(b) Conditional variance of di is

�(xi�) [1� �(xi�)] ;

which indicates conditional heteroskedasticity.

(c) Yes, we can improve the e¢ ciency, since we take into account its
conditional variance strucutre. Think of GLS! First, estimate e� as
shown in part (a). Then, solve the following problem:

Argmin
�

NX
i=1

(di � �(xi�))2
1

�(xie�)�1� �(xie�)� :
(d) For MLE, construct the loglikelihood function as follows:

l(�) =
NX
i=1

[di log �(xi�) + (1� di) log(1� �(xi�)] :

By FOC (score function), we can get the ML estimator:

NX
i=1

�
di
�(xi�)

�(xi�)
� (1� di)

�(xi�)

1� �(xi�)

�
xi = 0:

3. (2SLS)

(a) First, get bY2 as follows:bY2 = X(X 0X)�1X 0Y2 = PXY2:

Then, we can obtain 2SLS estimator byb� = (Z 0PXZ)�1Z 0PXy1:
(b) See the following equations showing that b� is same as b�� :

b�� = (Z 0PXZ)
�1Z 0PXby1

= (Z 0PXZ)
�1Z 0PXPXy1

= (Z 0PXZ)
�1Z 0PXy1

= b�:
4. (IV Estimation)

y = X1� + Y  + �

where X1 is k1 �N and Y is G�N
and X is k �N:
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(a) In order to identify �; k should be at least, k1 +G:

(b) OLS estimator:

b� = (Z 0Z)�1Z 0y

= (Z 0Z)�1Z 0(Z� + �)

(b� � �) = (Z 0Z)�1Z 0�

Applying the asymptotic theory, we will have the following.

p
N(b� � �) d! N

 
0; �2p lim

�
Z 0Z

N

��1!
Or you can just say that the (approximated) asymptotic variance ofb� is �2(Z 0Z)�1:

(c) IV estimator:

b�IV = (Z 0MZ)�1Z 0My

where M = X(X 0X)�1X

Asymptotic Variance of IV estimator:

b�IV = (Z 0MZ)�1Z 0My

= (Z 0MZ)�1Z 0M(Z� + �)b�IV � � = (Z 0MZ)�1Z 0M�

Using the similar technique, we have:

p
N(b�IV � �) d! N

 
0; �2p lim

�
Z 0MZ

N

��1!

Or you can just say that the (approximated) asymptotic variance ofb�IV is �2(Z 0MZ)�1:
(d) Asymptotic Variance of b� � b�IV :

b� � b�IV = f� + (Z 0Z)�1Z 0�g � f� + (Z 0MZ)�1Z 0M�g
= (Z 0Z)�1Z 0�� (Z 0MZ)�1Z 0M�

Note that E(b� � b�IV ) = 0:
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V ar(b� � b�IV ) = E[(b� � b�IV )(b� � b�IV )0]
= E[f(Z 0Z)�1Z 0�� (Z 0MZ)�1Z 0M�gf(Z 0Z)�1Z 0�� (Z 0MZ)�1Z 0M�g0]
= E[(Z 0Z)�1Z 0��0Z(Z 0Z)�1 � (Z 0MZ)�1Z 0M��0Z(Z 0Z)�1

�(Z 0Z)�1Z 0��0MZ(Z 0MZ)�1 + (Z 0MZ)�1Z 0M��MZ(Z 0MZ)�1

= �2[(Z 0Z)�1 � (Z 0Z)�1 � (Z 0Z)�1 + (Z 0MZ)�1]
= �2[(Z 0MZ)�1 � (Z 0Z)�1]

(e) The rank of the covariance matrix:
The covariance matrix is �2[(Z 0MZ)�1� (Z 0Z)�1]: The rank of this
matrix is same as that of (Z 0Z) � (Z 0MZ); since pre- or postmulti-
plication of some matrix (in our case, [(Z 0MZ)�1 � (Z 0Z)�1]) by a
nonsingular matrix does not change its rank. Premultiply the covari-
ance matrix by (Z 0MZ) and postmultiply it by (Z 0Z):Then, we are
end up with (Z 0Z)� (Z 0MZ):

(Z 0Z)� (Z 0MZ) = Z 0(I �M)Z

=

�
X 0
1

Y 0

��
I �M

� �
X1 Y

�
=

�
X 0
1

�
I �M

�
X1 X 0

1

�
I �M

�
Y

Y 0
�
I �M

�
X1 Y 0

�
I �M

�
Y

�
Note that

�
I �M

�
X1 = 0

=

�
0 0
0 Y 0

�
I �M

�
Y

�
Since Y 0

�
I �M

�
Y has a full rank, the rank of the covariance matrix

is G.

(f) The asymptotic covariance between b� and b� � b�IV :
Cov(b�;b� � b�IV ) = E[(b� � �)(b� � b�IV )0]

= E[f(Z 0Z)�1Z 0�gf(Z 0Z)�1Z 0�� (Z 0MZ)�1Z 0M�g0]
= E[(Z 0Z)�1Z 0��0Z(Z 0Z)�1 � (Z 0Z)�1Z 0��0MZ(Z 0MZ)�1]
= �2[(Z 0Z)�1 � (Z 0Z)�1]
= 0:

5. (Order Condition in SEM)

Note that for identi�cation of equation 1, we should haveK � K1+G1�1:

(a) f(x) = 1 + x: Here, we have that K = 2;(Strictly, the rank of X
is two) since f(x) is a linear combination of explanatory variables
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in equation 1. However, K1 + G1 � 1 = 3: Therefore, this is not
identi�ed.

(b) f(x) = 1 + x+ x2: Now, K = 3: This is just-identi�ed case.

(c) f(x) = 1 + exp(x): Now, K = 3: This is also just-identi�ed case.

6. (K-variable Regression)

(a) Matrix X, � will look like the following.

X =

0BBBBB@
1 0
0 1
1 0
0 1
...
...

1CCCCCA ; � =
�
�1
�2

�

Using the usual way of getting the variances of LS estimator, we have;

V ar(b�OLS) = (X 0X)�1

X 0X =

�
nodd 0
0 neven

�
where n = nodd + neven:

Note that, if n is even, nodd = neven and if n is odd, nodd = neven+1:
Therefore,

V ar(b�OLS) = � 1
n1

0

0 1
n2

�
(b) We are trying to solve the following equations.

(nodd)
�1
X
odd

(yi � xi�) = 0

(neven)
�1
X
even

(yi � xi�) = 0

Then, because of the strange(?) feature of X matrix, we have;

(nodd)
�1
X
odd

(yi � �1) = 0

(neven)
�1
X
even

(yi � �2) = 0

Therefore,
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��1 =

P
odd yi
nodd

��2 =

P
even yi
neven

Next, let�s �gure out the covariance matrix of the above estimator.

�� =

 P
odd yi
noddP
even yi
neven

!
=

 P
odd(�1+"i)

noddP
even(�2+"i)

neven

!
=

�
�1
�2

�
+

 P
odd "i
noddP
even "i
neven

!

Hence,

V ar(��) = E

" P
odd "i
noddP
even "i
neven

!� P
odd "i
nodd

P
even "i
neven

�#

=

� 1
nodd

0

0 1
neven

�
:

The variance of the OLS estimator is (X 0X)�1. This is same as the
above.
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