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1. Suppose that the regression model is;

y = X� + "

E(") = 0; E(""0) = �2


Assume that 
 is known.

(a) the covariance matrix of the OLS estimator

b�OLS = (X 0X)�1X 0y = � + (X 0X)�1X 0"

E(b�OLS) = �

V ar(b�OLS) = E[(X 0X)�1X 0""0X(X 0X)�1]

= (X 0X)�1X 0E(""0)X(X 0X)�1

= �2(X 0X)�1X 0
X(X 0X)�1

the covariance matrix of the GLS estimator

b�GLS = (X 0
�1X)�1X 0
�1y = � + (X 0
�1X)�1X 0
�1"

E(b�GLS) = �

V ar(b�GLS) = E[(X 0
�1X)�1X 0
�1""0
�1X(X 0
�1X)�1]

= (X 0
�1X)�1X 0
�1E(""0)
�1X(X 0
�1X)�1

= �2(X 0
�1X)�1X 0
�1

�1X(X 0
�1X)�1

= �2(X 0
�1X)�1

(b) the covariance matrix of the OLS residual vector

e = y �Xb�OLS = (I �X(X 0X)�1X 0)y =My =M"

E(e) = ME(") = 0

Therefore,
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V ar(e) = E(ee0) = E(M""0M) = �2M
M

= �2(I �X(X 0X)�1X 0)
(I �X(X 0X)�1X 0)

= �2(
� 
X(X 0X)�1X 0 �X(X 0X)�1X 0


+X(X 0X)�1X 0
X(X 0X)�1X 0)

(c) the covariance matrix of the GLS residual vector

ee = y �Xb�GLS = (I �X(X 0
�1X)�1X 0
�1)y

= (I �X(X 0
�1X)�1X 0
�1)"

E(ee) = (I �X(X 0
�1X)�1X 0
�1)E(") = 0

Therefore,

V ar(ee) = E(eeee0)
= E[(I �X(X 0
�1X)�1X 0
�1)""0(I �X(X 0
�1X)�1X 0
�1)0]

= (I �X(X 0
�1X)�1X 0
�1)E(""0)(I �X(X 0
�1X)�1X 0
�1)0

= �2(I �X(X 0
�1X)�1X 0
�1)
(I �X(X 0
�1X)�1X 0
�1)0

= �2[
�X(X 0
�1X)�1X 0]

(d) the covariance matrix of the OLS and the GLS residual vectors

e = (I �X(X 0X)�1X 0)"ee = (I �X(X 0
�1X)�1X 0
�1)"

Hence,

Cov(e; ee) = E[eee0]
= E[(I �X(X 0X)�1X 0)""0(I �X(X 0
�1X)�1X 0
�1)0]

= (I �X(X 0X)�1X 0)E(""0)(I �X(X 0
�1X)�1X 0
�1)0

= �2(I �X(X 0X)�1X 0)
(I �X(X 0
�1X)�1X 0
�1)0

= �2[
�X(X 0X)�1X 0
]

2. (a) Xt = �Xt�1 + "t where j�j < 1 and "t � i:i:d:(o; �2")
Use Lag Operator, L.

Xt = �LXt + "t

(1� �L)Xt = "t

Xt =
"t

1� �L
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Note that j�j < 1: Then we have;

Xt = "t + �"t�1 + �
2"t�1 + � � �

Hence,

E(Xt) = 0;

V ar(Xt) = E[("t + �"t�1 + �
2"t�2 + � � � )2]

("t and "t�k are uncorrelated, so cross

product terms are all zero)

= E("2t ) + �
2E("2t�1) + �

4E("2t�2) + � � �

= �2"

�
1

1� �2

�

Cov(Xt; Xt�k) = E[("t + �"t�1 + �
2"t�2 + � � � )

("t�k + �"t�k�1 + �
2"t�k�2 + � � � )]

= E(�k"2t�k) + E(�
k+1"2t�k�1) + E(�

k+2"2t�k�2) + � � �
= �kE("2t�k) + �

k+1E("2t�k�1) + �
k+2E("2t�k�2) + � � �

= �2"

�
�k

1� �

�
Therefore, Autocorrelation function �(k) is as follows.

�(k) =
Cov(Xt; Xt�k)p

V ar(Xt)
p
V ar(Xt�k)

=
Cov(Xt; Xt�k)

V ar(Xt)

(since V ar(Xt) = V ar(Xt�k) by stationarity)

=
�2"

�
�k

1��

�
�2"

�
1

1��2

� = �k
Therefore, this is gives a geometrically declining autocorreltion func-
tion and a partial autocorrelation function with zeros for k>1.

(b) Yt = "t + �1"t�1 + �2"t�2 where "t � i:i:d:(o; �2")
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E(Yt) = 0;

V ar(Yt) = E[("t + �1"t�1 + �2"t�2)
2]

("t and "t�k are uncorrelated, so cross

product terms are all zero)

= E("2t ) + �1
2E("2t�1) + �2

2E("2t�2)

= �2"
�
1 + �1

2 + �2
2
�

) �(0) = 1(Autocorrelation function at lag 0)

Cov(Yt; Yt�1) = E[("t + �1"t�1 + �2"t�2)("t�1 + �1"t�2 + �2"t�3)]

= E(�1"
2
t�1) + E(�2�1"t�2)

= �2"(�1 + �1�2)

�(1) =
Cov(Yt; Yt�1)

V ar(Yt)
=

�2"(�1 + �1�2)

�2" (1 + �1
2 + �22)

=
�1 + �1�2

1 + �12 + �22

Cov(Yt; Yt�2) = E[("t + �1"t�1 + �2"t�2)("t�2 + �1"t�3 + �2"t�4)]

= E(�2"
2
t�2)

= �2"�2

�(2) =
Cov(Yt; Yt�2)

V ar(Yt)
=

�2"�2
�2" (1 + �1

2 + �22)

=
�2

1 + �12 + �22

In addition, using the above method, we can easily know that �(k) = 0
when k>2.

Hence,

�(0) = 1

�(1) =
�1 + �1�2

1 + �12 + �22

�(2) =
�2

1 + �12 + �22

�(k) = 0, when k>2

The autocorrelation fuction is zero for k>2 and the pac function dclines
geometrically in absolute value(Possibly, it may change signs in terms of
real value).
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3. The following model is speci�ed:

y1 = 1y2 + �11x1 + "1

y2 = 2y1 + �22x2 + �32x3 + "2

All variables are in measured in deviations from their means. The sample
of 25 observations produces the following matrix of sum of squares and
cross products:

y1 y2 x1 x2 x3
y1 20 6 4 3 5
y2 6 10 3 6 7
x1 4 3 5 2 3
x2 3 6 2 10 8
x3 5 7 3 8 15

We write the model as:

y1 = 1y2 + �11x1 + �1 = Z1�1 + �1

y2 = 2y1 + �22x2 + �32x3 + �2 = Z2�2 + �2

The relevant submatrices are;

X 0X =

0@ 5 2 3
2 10 8
3 8 15

1A X 0y1 =

0@ 4
3
5

1A X 0y2 =

0@ 3
6
7

1A
X 0Z1 =

0@ 3 5
6 2
7 3

1A X 0Z2 =

0@ 4 2 3
3 10 8
5 8 15

1A
Z 01Z1 =

�
10 3
3 5

�
Z 02Z2 =

0@ 20 3 5
3 10 8
5 8 15

1A Z 01Z2 =

�
6 6 7
4 2 3

�

Z 01y1 =

�
6
4

�
Z 01y2 =

�
10
3

�
Z 02y1 =

0@ 20
3
5

1A Z 02y2 =

0@ 6
6
7

1A
y01y1 = 20 y02y2 = 10 y01y2 = 6

(a) Estimate the two equations by OLS.
For equation 1,

b�OLS1 =

� b1b�11
�
= (Z 01Z1)

�1Z 01y1

=

�
10 3
3 5

��1�
6
4

�
=

�
0:122 �0:0732
�0:0732 0:2439

��
6
4

�
=

�
0:439
0:5366

�
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For equation 2,

b�OLS2 =

0@ b2b�22b�32
1A = (Z 02Z2)

�1Z 02y2

=

0@ 20 3 5
3 10 8
5 8 15

1A�10@ 6
6
7

1A
=

0@ 0:0546 �0:0032 �0:0165
�0:0032 0:1746 �0:0921
�0:0165 �0:0921 0:1213

1A0@ 6
6
7

1A
=

0@ 0:1930
0:3841
0:1975

1A
(b) Estimate the parameters of the two equations by 2SLS.

For equation 1,

b�2SLS1 =

� b1b�11
�
= (Z 01PxZ1)

�1Z 01Pxy1

=

264
0@ 3 5
6 2
7 3

1A00@ 5 2 3
2 10 8
3 8 15

1A�10@ 3 5
6 2
7 3

1A
375
�10@ 3 5

6 2
7 3

1A00@ 5 2 3
2 10 8
3 8 15

1A�10@ 4
3
5

1A
=

�
0:3688
0:5787

�
For equation 2,

b�2SLS2 =

0@ b2b�22b�32
1A = (Z 02PxZ2)

�1Z 02Pxy2

=

0@ 0:484375
0:367188
0:109375

1A
4. The following model is speci�ed:

y1 = 1y2 + �11x1 + �12x2 + �13x3 + "1

y2 = 2y1 + �21x1 + �22x2 + �23x3 + "2

The error terms have both expectation zero. We consider only exclusion
restrictions. Using the order and rank conditions, verify whether the model
is identi�ed under the following restrictions:
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In the lecture note 15, we have the following conditions:

Order condition: There is at least one blank space in the row of the
identi�ed eqution. This is a necessary condition.

Rank condition: The variable left out of the equation considered must
appear in the other. This is a necessary condition.

The followings are all about checking order condition.

(a) �12 = �13 = �21 = 0
y1 y2 x1 x2 x3

eq.1(y1) g g g
eq.2(y2) g g g g
The order condition is satis�ed. Eq.1 is over-identi�ed, and Eq. 2 is
just-identi�ed.

(b) �11 = �12 = �13 = 0
y1 y2 x1 x2 x3

eq.1(y1) g g
eq.2(y2) g g g g g
The ordr condition is not satis�ed. Eq.1 is over-identi�ed. But Eq.
2 is under-identi�ed.

(c) �13 = �22 = 0
y1 y2 x1 x2 x3

eq.1(y1) g g g g
eq.2(y2) g g g g
The order condition is satis�ed. Both equations are just-identi�ed.

(d) �11 = �12 = 0
y1 y2 x1 x2 x3

eq.1(y1) g g g
eq.2(y2) g g g g g
The order condition is not satis�ed. Eq.1 is over-identi�ed. But Eq.
2 is under-identi�ed.

5. (2005 Final) You have a regression model yi = �+�xi+"i where x is either
0 or 1. In an attempt to simplify your estimation problem, you calculate
y0 and y1; wher these are the sample means corresponding to observations
with x=o and x=1 respectively. Then you calculate �� and �� by y0 and
y1 � y0: Are your estimators unbiased? Consistent? E¢ cient(minimum
variance unbiased)?

We can rewrite the model as yi = �(1 � xi) + (� + �)xi + "i: Then OLS
estimators b� =

P
yi1[xi = 0]=

P
1[xi = 0] = y0 and (b� + b�) = y1:

Therefore, �� and �� are equal to the OLS estimators. They are unbiased,
consistent and e¢ cient.
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