Cornell University

Department of Economics

Econ 620 - Spring 2008
TA: Jae Ho Yun

Solution Key for PS \#4

1. Suppose that the regression model is;

$$
\begin{aligned}
y & =X \beta+\varepsilon \\
E(\varepsilon) & =0, E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} \Omega
\end{aligned}
$$

Assume that Ω is known.
(a) the covariance matrix of the OLS estimator

$$
\begin{aligned}
\widehat{\beta}_{O L S} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
E\left(\widehat{\beta}_{O L S}\right) & =\beta \\
\operatorname{Var}\left(\widehat{\beta}_{O L S}\right) & =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1}\right] \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

the covariance matrix of the GLS estimator

$$
\begin{aligned}
\widehat{\beta}_{G L S} & =\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} \varepsilon \\
E\left(\widehat{\beta}_{G L S}\right) & =\beta \\
\operatorname{Var}\left(\widehat{\beta}_{G L S}\right) & =E\left[\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} \varepsilon \varepsilon^{\prime} \Omega^{-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right] \\
& =\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} E\left(\varepsilon \varepsilon^{\prime}\right) \Omega^{-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} \Omega \Omega^{-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

(b) the covariance matrix of the OLS residual vector

$$
\begin{aligned}
e & =y-X \widehat{\beta}_{O L S}=\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) y=M y=M \varepsilon \\
E(e) & =M E(\varepsilon)=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}(e)= & E\left(e e^{\prime}\right)=E\left(M \varepsilon \varepsilon^{\prime} M\right)=\sigma^{2} M \Omega M \\
= & \sigma^{2}\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \Omega\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
= & \sigma^{2}\left(\Omega-\Omega X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega\right. \\
& \left.+X\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)
\end{aligned}
$$

(c) the covariance matrix of the GLS residual vector

$$
\begin{aligned}
\widetilde{e} & =y-X \widehat{\beta}_{G L S}=\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) y \\
& =\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \varepsilon \\
E(\widetilde{e}) & =\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) E(\varepsilon)=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}(\widetilde{e}) & =E(\widetilde{e e}) \\
& =E\left[\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \varepsilon \varepsilon^{\prime}\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime}\right] \\
& =\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) E\left(\varepsilon \varepsilon^{\prime}\right)\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
& =\sigma^{2}\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \Omega\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
& =\sigma^{2}\left[\Omega-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime}\right]
\end{aligned}
$$

(d) the covariance matrix of the OLS and the GLS residual vectors

$$
\begin{aligned}
e & =\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \varepsilon \\
\widetilde{e} & =\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \varepsilon
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{Cov}(e, \widetilde{e}) & =E\left[e \widetilde{e}^{\prime}\right] \\
& =E\left[\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \varepsilon \varepsilon^{\prime}\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime}\right] \\
& =\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) E\left(\varepsilon \varepsilon^{\prime}\right)\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
& =\sigma^{2}\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \Omega\left(I-X\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
& =\sigma^{2}\left[\Omega-X\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega\right]
\end{aligned}
$$

2. (a) $X_{t}=\rho X_{t-1}+\varepsilon_{t}$ where $|\rho|<1$ and $\varepsilon_{t} \sim i . i . d .\left(o, \sigma_{\varepsilon}^{2}\right)$

Use Lag Operator, L.

$$
\begin{aligned}
X_{t} & =\rho L X_{t}+\varepsilon_{t} \\
(1-\rho L) X_{t} & =\varepsilon_{t} \\
X_{t} & =\frac{\varepsilon_{t}}{1-\rho L}
\end{aligned}
$$

Note that $|\rho|<1$. Then we have;

$$
X_{t}=\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-1}+\cdots
$$

Hence,

$$
\begin{aligned}
E\left(X_{t}\right)= & 0 \\
\operatorname{Var}\left(X_{t}\right)= & E\left[\left(\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2}+\cdots\right)^{2}\right] \\
& \left(\varepsilon_{t} \text { and } \varepsilon_{t-k}\right. \text { are uncorrelated, so cross } \\
& \text { product terms are all zero }) \\
= & E\left(\varepsilon_{t}^{2}\right)+\rho^{2} E\left(\varepsilon_{t-1}^{2}\right)+\rho^{4} E\left(\varepsilon_{t-2}^{2}\right)+\cdots \\
= & \sigma_{\varepsilon}^{2}\left(\frac{1}{1-\rho^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{t-k}\right)= & E\left[\left(\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2}+\cdots\right)\right. \\
& \left.\left(\varepsilon_{t-k}+\rho \varepsilon_{t-k-1}+\rho^{2} \varepsilon_{t-k-2}+\cdots\right)\right] \\
= & E\left(\rho^{k} \varepsilon_{t-k}^{2}\right)+E\left(\rho^{k+1} \varepsilon_{t-k-1}^{2}\right)+E\left(\rho^{k+2} \varepsilon_{t-k-2}^{2}\right)+\cdots \\
= & \rho^{k} E\left(\varepsilon_{t-k}^{2}\right)+\rho^{k+1} E\left(\varepsilon_{t-k-1}^{2}\right)+\rho^{k+2} E\left(\varepsilon_{t-k-2}^{2}\right)+\cdots \\
= & \sigma_{\varepsilon}^{2}\left(\frac{\rho^{k}}{1-\rho}\right)
\end{aligned}
$$

Therefore, Autocorrelation function $\theta(k)$ is as follows.

$$
\begin{aligned}
\theta(k) & =\frac{\operatorname{Cov}\left(X_{t}, X_{t-k}\right)}{\sqrt{\operatorname{Var}\left(X_{t}\right)} \sqrt{\operatorname{Var}\left(X_{t-k}\right)}} \\
& =\frac{\operatorname{Cov}\left(X_{t}, X_{t-k}\right)}{\operatorname{Var}\left(X_{t}\right)} \\
\text { (since } \operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(X_{t-k}\right) \text { by stationarity) } \\
& =\frac{\sigma_{\varepsilon}^{2}\left(\frac{\rho^{k}}{1-\rho}\right)}{\sigma_{\varepsilon}^{2}\left(\frac{1}{1-\rho^{2}}\right)}=\rho^{k}
\end{aligned}
$$

Therefore, this is gives a geometrically declining autocorreltion function and a partial autocorrelation function with zeros for $\mathrm{k}>1$.
(b) $Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}$ where $\varepsilon_{t} \sim i . i . d .\left(o, \sigma_{\varepsilon}^{2}\right)$

$$
\begin{aligned}
E\left(Y_{t}\right)= & 0, \\
\operatorname{Var}\left(Y_{t}\right)= & E\left[\left(\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}\right)^{2}\right] \\
& \left(\varepsilon_{t} \text { and } \varepsilon_{t-k}\right. \text { are uncorrelated, so cross } \\
& \text { product terms are all zero }) \\
= & E\left(\varepsilon_{t}^{2}\right)+\theta_{1}{ }^{2} E\left(\varepsilon_{t-1}^{2}\right)+\theta_{2}{ }^{2} E\left(\varepsilon_{t-2}^{2}\right) \\
= & \sigma_{\varepsilon}^{2}\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}\right) \\
\Rightarrow & \theta(0)=1 \text { (Autocorrelation function at lag } 0)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right) & =E\left[\left(\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}\right)\left(\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}+\theta_{2} \varepsilon_{t-3}\right)\right] \\
& =E\left(\theta_{1} \varepsilon_{t-1}^{2}\right)+E\left(\theta_{2} \theta_{1} \varepsilon_{t-2}\right) \\
& =\sigma_{\varepsilon}^{2}\left(\theta_{1}+\theta_{1} \theta_{2}\right) \\
\theta(1) & =\frac{\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right)}{\operatorname{Var}\left(Y_{t}\right)}=\frac{\sigma_{\varepsilon}^{2}\left(\theta_{1}+\theta_{1} \theta_{2}\right)}{\sigma_{\varepsilon}^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)} \\
& =\frac{\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t-2}\right) & =E\left[\left(\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}\right)\left(\varepsilon_{t-2}+\theta_{1} \varepsilon_{t-3}+\theta_{2} \varepsilon_{t-4}\right)\right] \\
& =E\left(\theta_{2} \varepsilon_{t-2}^{2}\right) \\
& =\sigma_{\varepsilon}^{2} \theta_{2} \\
\theta(2) & =\frac{\operatorname{Cov}\left(Y_{t}, Y_{t-2}\right)}{\operatorname{Var}\left(Y_{t}\right)}=\frac{\sigma_{\varepsilon}^{2} \theta_{2}}{\sigma_{\varepsilon}^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)} \\
& =\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}
\end{aligned}
$$

In addition, using the above method, we can easily know that $\theta(k)=0$ when $\mathrm{k}>2$.
Hence,

$$
\begin{aligned}
\theta(0) & =1 \\
\theta(1) & =\frac{\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} \\
\theta(2) & =\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} \\
\theta(k) & =0, \text { when } \mathrm{k}>2
\end{aligned}
$$

The autocorrelation fuction is zero for $\mathrm{k}>2$ and the pac function dclines geometrically in absolute value(Possibly, it may change signs in terms of real value).
3. The following model is specified:

$$
\begin{aligned}
& y_{1}=\gamma_{1} y_{2}+\beta_{11} x_{1}+\varepsilon_{1} \\
& y_{2}=\gamma_{2} y_{1}+\beta_{22} x_{2}+\beta_{32} x_{3}+\varepsilon_{2}
\end{aligned}
$$

All variables are in measured in deviations from their means. The sample of 25 observations produces the following matrix of sum of squares and cross products:

	y_{1}	y_{2}	x_{1}	x_{2}	x_{3}
y_{1}	20	6	4	3	5
y_{2}	6	10	3	6	7
x_{1}	4	3	5	2	3
x_{2}	3	6	2	10	8
x_{3}	5	7	3	8	15

We write the model as:

$$
\begin{aligned}
& y_{1}=\gamma_{1} y_{2}+\beta_{11} x_{1}+\epsilon_{1}=Z_{1} \delta_{1}+\epsilon_{1} \\
& y_{2}=\gamma_{2} y_{1}+\beta_{22} x_{2}+\beta_{32} x_{3}+\epsilon_{2}=Z_{2} \delta_{2}+\epsilon_{2}
\end{aligned}
$$

The relevant submatrices are;

$$
\begin{aligned}
& X^{\prime} X=\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right) \quad X^{\prime} y_{1}=\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right) \quad X^{\prime} y_{2}=\left(\begin{array}{l}
3 \\
6 \\
7
\end{array}\right) \\
& X^{\prime} Z_{1}=\left(\begin{array}{cc}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right) \quad X^{\prime} Z_{2}=\left(\begin{array}{ccc}
4 & 2 & 3 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right) \\
& Z_{1}^{\prime} Z_{1}=\left(\begin{array}{cc}
10 & 3 \\
3 & 5
\end{array}\right) \quad Z_{2}^{\prime} Z_{2}=\left(\begin{array}{ccc}
20 & 3 & 5 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right) \quad Z_{1}^{\prime} Z_{2}=\left(\begin{array}{ccc}
6 & 6 & 7 \\
4 & 2 & 3
\end{array}\right) \\
& Z_{1}^{\prime} y_{1}=\binom{6}{4} \quad Z_{1}^{\prime} y_{2}=\binom{10}{3} \quad Z_{2}^{\prime} y_{1}=\left(\begin{array}{c}
20 \\
3 \\
5
\end{array}\right) \quad Z_{2}^{\prime} y_{2}=\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& y_{1}^{\prime} y_{1}=20 \quad y_{2}^{\prime} y_{2}=10 \quad y_{1}^{\prime} y_{2}=6
\end{aligned}
$$

(a) Estimate the two equations by OLS.

For equation 1,

$$
\begin{aligned}
\widehat{\delta}_{1}^{O L S} & =\binom{\widehat{\gamma}_{1}}{\widehat{\beta}_{11}}=\left(Z_{1}^{\prime} Z_{1}\right)^{-1} Z_{1}^{\prime} y_{1} \\
& =\left(\begin{array}{cc}
10 & 3 \\
3 & 5
\end{array}\right)^{-1}\binom{6}{4} \\
& =\left(\begin{array}{cc}
0.122 & -0.0732 \\
-0.0732 & 0.2439
\end{array}\right)\binom{6}{4} \\
& =\binom{0.439}{0.5366}
\end{aligned}
$$

For equation 2 ,

$$
\begin{aligned}
\widehat{\delta}_{2}^{O L S} & =\left(\begin{array}{l}
\widehat{\gamma}_{2} \\
\widehat{\beta}_{22} \\
\widehat{\beta}_{32}
\end{array}\right)=\left(Z_{2}^{\prime} Z_{2}\right)^{-1} Z_{2}^{\prime} y_{2} \\
& =\left(\begin{array}{ccc}
20 & 3 & 5 \\
3 & 10 & 8 \\
5 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.0546 & -0.0032 & -0.0165 \\
-0.0032 & 0.1746 & -0.0921 \\
-0.0165 & -0.0921 & 0.1213
\end{array}\right)\left(\begin{array}{l}
6 \\
6 \\
7
\end{array}\right) \\
& =\left(\begin{array}{c}
0.1930 \\
0.3841 \\
0.1975
\end{array}\right)
\end{aligned}
$$

(b) Estimate the parameters of the two equations by 2 SLS.

For equation 1,

$$
\begin{aligned}
\widehat{\delta}_{1}^{2 S L S} & =\binom{\widehat{\gamma}_{1}}{\widehat{\beta}_{11}}=\left(Z_{1}^{\prime} P_{x} Z_{1}\right)^{-1} Z_{1}^{\prime} P_{x} y_{1} \\
& =\left[\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)\right]^{-1}\left(\begin{array}{ll}
3 & 5 \\
6 & 2 \\
7 & 3
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
5 & 2 & 3 \\
2 & 10 & 8 \\
3 & 8 & 15
\end{array}\right)^{-1}\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right) \\
& =\binom{0.3688}{0.5787}
\end{aligned}
$$

For equation 2,

$$
\begin{aligned}
\widehat{\delta}_{2}^{2 S L S} & =\left(\begin{array}{l}
\widehat{\gamma}_{2} \\
\widehat{\beta}_{22} \\
\widehat{\beta}_{32}
\end{array}\right)=\left(Z_{2}^{\prime} P_{x} Z_{2}\right)^{-1} Z_{2}^{\prime} P_{x} y_{2} \\
& =\left(\begin{array}{l}
0.484375 \\
0.367188 \\
0.109375
\end{array}\right)
\end{aligned}
$$

4. The following model is specified:

$$
\begin{aligned}
& y_{1}=\gamma_{1} y_{2}+\beta_{11} x_{1}+\beta_{12} x_{2}+\beta_{13} x_{3}+\varepsilon_{1} \\
& y_{2}=\gamma_{2} y_{1}+\beta_{21} x_{1}+\beta_{22} x_{2}+\beta_{23} x_{3}+\varepsilon_{2}
\end{aligned}
$$

The error terms have both expectation zero. We consider only exclusion restrictions. Using the order and rank conditions, verify whether the model is identified under the following restrictions:

In the lecture note 15 , we have the following conditions:
Order condition: There is at least one blank space in the row of the identified eqution. This is a necessary condition.
Rank condition: The variable left out of the equation considered must appear in the other. This is a necessary condition.

The followings are all about checking order condition.
(a) $\beta_{12}=\beta_{13}=\beta_{21}=0$

	$y 1$	$y 2$	$x 1$	$x 2$	$x 3$
eq.1(y1)	γ	γ	γ		
eq.2(y2)	\curlyvee	γ		\curlyvee	\curlyvee

The order condition is satisfied. Eq. 1 is over-identified, and Eq. 2 is just-identified.
(b) $\beta_{11}=\beta_{12}=\beta_{13}=0$

	$y 1$	$y 2$	$x 1$	$x 2$	$x 3$
eq.1(y1)	γ	γ			
eq.2(y2)	γ	γ	γ	γ	γ

The ordr condition is not satisfied. Eq. 1 is over-identified. But Eq. 2 is under-identified.
(c) $\beta_{13}=\beta_{22}=0$

	$y 1$	$y 2$	$x 1$	$x 2$	$x 3$
eq.1(y1)	\curlyvee	γ	γ	\curlyvee	
eq.2(y2)	\curlyvee	\curlyvee	\curlyvee		\curlyvee

The order condition is satisfied. Both equations are just-identified.
(d) $\beta_{11}=\beta_{12}=0$

	$y 1$	$y 2$	$x 1$	$x 2$	$x 3$
eq.1(y1)	\curlyvee	\curlyvee			γ
eq.2(y2)	\curlyvee	\curlyvee	\curlyvee	\curlyvee	\curlyvee

The order condition is not satisfied. Eq. 1 is over-identified. But Eq. 2 is under-identified.
5. (2005 Final) You have a regression model $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$ where x is either 0 or 1 . In an attempt to simplify your estimation problem, you calculate \bar{y}_{0} and \bar{y}_{1}, wher these are the sample means corresponding to observations with $\mathrm{x}=\mathrm{o}$ and $\mathrm{x}=1$ respectively. Then you calculate α^{*} and β^{*} by \bar{y}_{0} and $\bar{y}_{1}-\bar{y}_{0}$. Are your estimators unbiased? Consistent? Efficient(minimum variance unbiased)?
We can rewrite the model as $y_{i}=\alpha\left(1-x_{i}\right)+(\beta+\alpha) x_{i}+\varepsilon_{i}$. Then OLS estimators $\widehat{\alpha}=\sum y_{i} 1\left[x_{i}=0\right] / \sum 1\left[x_{i}=0\right]=y_{0}$ and $(\widehat{\beta}+\widehat{\alpha})=\bar{y}_{1}$. Therefore, α^{*} and β^{*} are equal to the OLS estimators. They are unbiased, consistent and efficient.

