Cornell University

Department of Economics

Econ 620 - Spring 2008
Instructor: Professor Kiefer

Selective Solutions for PS \# 3

1. (Refer to the solution for (2) from 2006 midterm)
2. (Refer to the solution for (1) from 2002 midterm)
3.

$$
\begin{aligned}
\text { Model I } & : \\
\text { Model II } & : \\
\text { Mo } & M_{2} y=M_{2} X_{1} \beta_{1}+\varepsilon
\end{aligned}
$$

Model I: $\widehat{\beta}_{1}^{I}=\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} y$
Model II: $\widehat{\beta}_{2}^{I I}=\left[\left(M_{2} X_{1}\right)^{\prime}\left(M_{2} X_{1}\right)\right]^{-1}\left(M_{2} X_{1}\right)^{\prime} y$
Recall that M_{2} is idempotent and symmetric, then we have
$\widehat{\beta}_{2}^{I I}=\left(X_{1}{ }^{\prime} M_{2}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}{ }^{\prime} M_{2}^{\prime} y=\left(X_{1}{ }^{\prime} M_{2} X_{1}\right)^{-1} X_{1}{ }^{\prime} M_{2} y$
Therefore, we have $\widehat{\beta}_{1}^{I}=\widehat{\beta}_{2}^{I I}$
4. For the standard normal regression model;

$$
y=X \beta+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

(a) Write down the log-likelihood function. And find MLE for β and σ^{2}. Log-likelihood function:

$$
l\left(\beta, \sigma^{2}\right)=-\frac{N}{2} \log 2 \pi-\frac{N}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)
$$

For MLE, find the First Order Condition(Score function)

$$
\begin{aligned}
\frac{\partial l}{\partial \beta} & =-\frac{1}{2 \sigma^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)=0 \\
\frac{\partial l}{\partial \sigma^{2}} & =-\frac{N}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-X \beta)=0
\end{aligned}
$$

From the above, we can obtain MLE.

$$
\begin{aligned}
\widehat{\beta}_{M L} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
{\widehat{\sigma^{2}}}_{M L} & =\frac{e^{\prime} e}{N}, \text { where } e=y-X \widehat{\beta}_{M L}
\end{aligned}
$$

(b) Find the asymptotic distribution of MLE.

Recall that $\sqrt{N}\left(\widehat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, i\left(\theta_{0}\right)^{-1}\right)$ and that $i\left(\theta_{0}\right)=-h\left(\theta_{0}\right)$ where $h\left(\theta_{0}\right)$ is expected hessian.
For elements of hessian, find second derivatives of log likelihood function

$$
\begin{aligned}
\frac{\partial^{2} l}{\partial \beta \partial \beta^{\prime}} & =-\frac{X^{\prime} X}{\sigma^{2}} \\
\frac{\partial^{2} l}{\partial\left(\sigma^{2}\right)^{2}} & =\frac{N}{2} \frac{1}{\left(\sigma^{2}\right)^{2}}-\frac{1}{\left(\sigma^{2}\right)^{3}}(y-X \beta)^{\prime}(y-X \beta) \\
\frac{\partial^{2} l}{\partial \beta \partial \sigma^{2}} & =\frac{1}{2\left(\sigma^{2}\right)^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)
\end{aligned}
$$

From the above, the expected hessian is

$$
\begin{aligned}
h\left(\theta_{0}\right) & =\left[\begin{array}{cc}
-E\left(\frac{X^{\prime} X}{N \sigma^{2}}\right) & E\left[\frac{1}{N 2\left(\sigma^{2}\right)^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)\right] \\
E\left[\frac{1}{N 2\left(\sigma^{2}\right)^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)\right]^{\prime} & E\left[\frac{1}{N}\left(\frac{N}{2} \frac{1}{\left(\sigma^{2}\right)^{2}}-\frac{1}{\left(\sigma^{2}\right)^{3}}(y-X \beta)^{\prime}(y-X \beta)\right)\right]
\end{array}\right] \\
& =\left[\begin{array}{cc}
-E\left(\frac{X^{\prime} X}{N \sigma^{2}}\right) & 0 \\
0 & -\frac{1}{2\left(\sigma^{2}\right)^{2}}
\end{array}\right]
\end{aligned}
$$

Therefore, we have

$$
\begin{gathered}
i\left(\theta_{0}\right)=\left[\begin{array}{cc}
E\left(\frac{X^{\prime} X}{N \sigma^{2}}\right) & 0 \\
0 & \frac{1}{2\left(\sigma^{2}\right)^{2}}
\end{array}\right] \\
i\left(\theta_{0}\right)^{-1}=\left[\begin{array}{cc}
\sigma^{2}\left[E\left(\frac{X^{\prime} X}{N}\right)\right]^{-1} & 0 \\
0 & 2\left(\sigma^{2}\right)^{2}
\end{array}\right]
\end{gathered}
$$

Finally, the asymptotic distribution will be as follows.

$$
\sqrt{N}\left[\begin{array}{c}
\widehat{\beta}-\beta \\
\widehat{\sigma^{2}}-\sigma^{2}
\end{array}\right] \xrightarrow{d} N\left(0,\left[\begin{array}{cc}
\sigma^{2}\left[E\left(\frac{X^{\prime} X}{N}\right)\right]^{-1} & 0 \\
0 & 2\left(\sigma^{2}\right)^{2}
\end{array}\right]\right.
$$

(c) Show that

$$
E\left(-\frac{\partial^{2} \log L}{\partial \beta \partial \beta^{\prime}}\right)=E\left(\left[\frac{\partial \log L}{\partial \beta}\right]\left[\frac{\partial \log L}{\partial \beta^{\prime}}\right]^{\prime}\right)
$$

LHS: $E\left(\frac{X^{\prime} X}{\sigma^{2}}\right)$

RHS:

$$
\begin{aligned}
& E\left[\left\{\frac{1}{2\left(\sigma^{2}\right)}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)\right\}\left\{\frac{1}{2\left(\sigma^{2}\right)}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)\right\}^{\prime}\right] \\
= & E\left[\frac{1}{4\left(\sigma^{2}\right)^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right)^{\prime}\right] \\
= & E\left[\frac{1}{4\left(\sigma^{2}\right)^{2}}\left(4 X^{\prime}(y-X \beta)(y-X \beta)^{\prime} X\right)\right] \\
= & E\left[\frac{1}{4\left(\sigma^{2}\right)^{2}} 4 X^{\prime} E\left\{(y-X \beta)(y-X \beta)^{\prime} \mid X\right\} X\right] \text { by law of iteative expectation } \\
= & E\left[\frac{1}{4\left(\sigma^{2}\right)^{2}} 4 X^{\prime} E\left\{\varepsilon \varepsilon^{\prime} \mid X\right\} X\right] \\
\left(E \left\{\varepsilon \varepsilon^{\prime} \quad \mid\right.\right. & \left.X\}=\sigma^{2} I\right) \\
= & E\left[\frac{1}{\sigma^{2}} X^{\prime} X\right]
\end{aligned}
$$

Hence, we have RHS=LHS.
5. Consider the following regression model;

$$
y=X \beta+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2} I\right)
$$

with $E(\varepsilon)=0, E\left(\varepsilon \varepsilon^{\prime}\right)=\sigma^{2} I$. Three potential linear estimatiors for β are

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\widetilde{\beta} & =\widehat{\beta}+N^{-1} 1 \\
\bar{\beta} & =\widehat{\beta}+N^{-\frac{1}{2}} 1
\end{aligned}
$$

where 1 is a $k \times 1$ vector of ones.
(a) Which of these are unbiased?
$=>\widehat{\beta}$ (done in the section)
(b) Which are consistent?
$=>$ They are all consistent (done in the section)
(c) What are the asymptotic distributions of $\sqrt{N}(\widehat{\beta}-\beta), \sqrt{N}(\widetilde{\beta}-\beta)$, and $\sqrt{N}(\bar{\beta}-\beta)$?
i) $\sqrt{N}(\widehat{\beta}-\beta) \sim N\left(0, \sigma^{2} Q^{-1}\right)$, where $Q=p \lim \left(\frac{X^{\prime} X}{N}\right)$ (done in the section)
ii) $\sqrt{N}(\widetilde{\beta}-\beta)$:

$$
\begin{aligned}
\widetilde{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon)+\frac{1}{N} \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon+\frac{1}{N}
\end{aligned}
$$

Therefore,

$$
\sqrt{N}(\widetilde{\beta}-\beta)=\left(\frac{X^{\prime} X}{N}\right)^{-1}\left(\frac{X^{\prime} \varepsilon}{\sqrt{N}}\right)+\frac{1}{\sqrt{N}}
$$

Recall that $\frac{1}{\sqrt{N}}=o_{p}(1), p \lim \left(\frac{X^{\prime} X}{N}\right)^{-1}=Q^{-1},\left(\frac{X^{\prime} \varepsilon}{\sqrt{N}}\right) \xrightarrow{d} N\left(0, \sigma^{2} Q\right)$
Hence,

$$
\sqrt{N}(\widetilde{\beta}-\beta) \sim N\left(0, \sigma^{2} Q^{-1}\right)
$$

iii) $\sqrt{N}(\bar{\beta}-\beta) \sim N\left(1, \sigma^{2} Q^{-1}\right)$ (done in the section)
6. Suppose $x_{i}, i=1,2, \cdots$ is a sequence of independent random variables where each x_{i} is uniformly distributed with density

$$
f\left(x_{i}\right)=1_{1\left[0 \leq x_{i}<1\right]} \text { for all } i
$$

(a) Find $p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}, p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ and $p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{3}$

Let's apply the law of large numbers.
$p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}=E\left(x_{i}\right)=\int_{0}^{1} x \cdot 1 d x=\frac{1}{2}$
$p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}=E\left(x_{i}^{2}\right)=\int_{0}^{1} x^{2} \cdot 1 d x=\frac{1}{3}$
$p \lim \frac{1}{n} \sum_{i=1}^{n} x_{i}^{3}=E\left(x_{i}^{3}\right)=\int_{0}^{1} x^{3} \cdot 1 d x=\frac{1}{4}$
(b) Suppose $x_{i}^{\prime} s$ are as above and $y_{i}=x_{i}^{2}+\varepsilon_{i}$ with ε_{i} independent of x_{i} and $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$. You run the regression $E y_{i}=$ $\alpha+\beta x_{i}$. Find $p \lim \widehat{\alpha}$ and $p \lim \widehat{\beta}$ where $\widehat{\alpha}$ and $\widehat{\beta}$ are the least squares estimators.

$$
\begin{aligned}
\widehat{\beta} & =\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(x_{i}^{2}+\varepsilon_{i}\right)}{\sum x_{i}^{2}-n(\bar{x})^{2}} \\
& =\frac{\sum x_{i}^{3}-\bar{x} \sum x_{i}^{2}+\sum x_{i} \varepsilon_{i}-\bar{x} \sum \varepsilon_{i}}{\sum x_{i}^{2}-N(\bar{x})^{2}} \\
& =\frac{\frac{\sum x_{i}^{3}}{N}-\bar{x} \frac{\sum x_{i}^{2}}{N}+\frac{\sum x_{i} \varepsilon_{i}}{N}-\bar{x} \frac{\sum \varepsilon_{i}}{N}}{\frac{\sum x_{i}^{2}}{N}-(\bar{x})^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
p \lim \widehat{\beta} & =\frac{p \lim \frac{\sum x_{i}^{3}}{N}-p \lim \bar{x} \cdot p \lim \frac{\sum x_{i}^{2}}{N}+p \lim \frac{\sum x_{i} \varepsilon_{i}}{N}-p \lim \bar{x} \cdot p \lim \frac{\sum \varepsilon_{i}}{N}}{p \lim \frac{\sum x_{i}^{2}}{N}-p \lim (\bar{x})^{2}} \\
& =\frac{E\left(x_{i}^{3}\right)-E\left(x_{i}\right) \cdot E\left(x_{i}^{2}\right)+E\left(x_{i} \varepsilon_{i}\right)-E\left(x_{i}\right) \cdot E\left(\varepsilon_{i}\right)}{E\left(x_{i}^{2}\right)-\left(E\left(x_{i}\right)\right)^{2}} \\
& =\frac{\frac{1}{4}-\frac{1}{2} \cdot \frac{1}{3}+0-\frac{1}{2} \cdot 0}{\frac{1}{3}-\left(\frac{1}{2}\right)^{2}} \\
& =1
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\widehat{\alpha}= & \bar{y}-\widehat{\beta} \bar{x}=\frac{\sum y_{i}}{N}-\widehat{\beta} \frac{\sum x_{i}}{N}=\frac{\sum\left(x_{i}^{2}+\varepsilon_{i}\right)}{N}-\widehat{\beta} \frac{\sum x_{i}}{N} \\
& \text { Therefore, } \\
p \lim \widehat{\alpha}= & p \lim \frac{\sum x_{i}^{2}}{N}+p \lim \frac{\sum \varepsilon_{i}}{N}-p \lim \widehat{\beta} \cdot p \lim \frac{\sum x_{i}}{N} \\
= & \frac{1}{3}+0-1 \cdot \frac{1}{2}=-\frac{1}{6}
\end{aligned}
$$

